Update evo_model.py
Browse files- evo_model.py +65 -19
evo_model.py
CHANGED
|
@@ -1,22 +1,68 @@
|
|
| 1 |
-
import torch
|
| 2 |
import torch.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
class EvoDecoderModel(nn.Module):
|
| 5 |
-
def __init__(self, vocab_size,
|
| 6 |
-
super(
|
| 7 |
-
self.
|
| 8 |
-
self.
|
| 9 |
-
|
| 10 |
-
self.
|
| 11 |
-
self.
|
| 12 |
-
|
| 13 |
-
def forward(self,
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
return
|
|
|
|
|
|
|
| 1 |
import torch.nn as nn
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
class FeedForward(nn.Module):
|
| 5 |
+
def __init__(self, dim, hidden_dim):
|
| 6 |
+
super().__init__()
|
| 7 |
+
self.net = nn.Sequential(
|
| 8 |
+
nn.Linear(dim, hidden_dim),
|
| 9 |
+
nn.GELU(),
|
| 10 |
+
nn.Dropout(0.1),
|
| 11 |
+
nn.Linear(hidden_dim, dim),
|
| 12 |
+
nn.Dropout(0.1),
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
def forward(self, x):
|
| 16 |
+
return self.net(x)
|
| 17 |
+
|
| 18 |
+
class Attention(nn.Module):
|
| 19 |
+
def __init__(self, dim, heads=4):
|
| 20 |
+
super().__init__()
|
| 21 |
+
self.heads = heads
|
| 22 |
+
self.scale = dim ** -0.5
|
| 23 |
+
|
| 24 |
+
self.qkv_proj = nn.Linear(dim, dim * 3)
|
| 25 |
+
self.out_proj = nn.Linear(dim, dim)
|
| 26 |
+
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
B, T, C = x.shape
|
| 29 |
+
qkv = self.qkv_proj(x).reshape(B, T, 3, self.heads, C // self.heads).permute(2, 0, 3, 1, 4)
|
| 30 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
| 31 |
+
attn_scores = (q @ k.transpose(-2, -1)) * self.scale
|
| 32 |
+
attn_weights = attn_scores.softmax(dim=-1)
|
| 33 |
+
attn_output = attn_weights @ v
|
| 34 |
+
attn_output = attn_output.transpose(1, 2).reshape(B, T, C)
|
| 35 |
+
return self.out_proj(attn_output)
|
| 36 |
+
|
| 37 |
+
class TransformerBlock(nn.Module):
|
| 38 |
+
def __init__(self, dim, heads, hidden_dim):
|
| 39 |
+
super().__init__()
|
| 40 |
+
self.attn = Attention(dim, heads)
|
| 41 |
+
self.ffn = FeedForward(dim, hidden_dim)
|
| 42 |
+
self.ln1 = nn.LayerNorm(dim)
|
| 43 |
+
self.ln2 = nn.LayerNorm(dim)
|
| 44 |
+
|
| 45 |
+
def forward(self, x):
|
| 46 |
+
x = x + self.attn(self.ln1(x))
|
| 47 |
+
x = x + self.ffn(self.ln2(x))
|
| 48 |
+
return x
|
| 49 |
|
| 50 |
class EvoDecoderModel(nn.Module):
|
| 51 |
+
def __init__(self, vocab_size, dim=256, depth=3, heads=4, hidden_dim=512):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.token_emb = nn.Embedding(vocab_size, dim)
|
| 54 |
+
self.pos_emb = nn.Embedding(512, dim)
|
| 55 |
+
self.blocks = nn.Sequential(*[TransformerBlock(dim, heads, hidden_dim) for _ in range(depth)])
|
| 56 |
+
self.ln_f = nn.LayerNorm(dim)
|
| 57 |
+
self.fc_out = nn.Linear(dim, vocab_size)
|
| 58 |
+
|
| 59 |
+
def forward(self, x):
|
| 60 |
+
B, T = x.shape
|
| 61 |
+
pos = torch.arange(0, T, device=x.device).unsqueeze(0)
|
| 62 |
+
tok = self.token_emb(x)
|
| 63 |
+
pos = self.pos_emb(pos)
|
| 64 |
+
x = tok + pos
|
| 65 |
+
x = self.blocks(x)
|
| 66 |
+
x = self.ln_f(x)
|
| 67 |
+
logits = self.fc_out(x)
|
| 68 |
+
return logits
|