Spaces:
Runtime error
Runtime error
| from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments | |
| from datasets import load_dataset | |
| # Load model and tokenizer | |
| model_name = "distilgpt2" | |
| model = AutoModelForCausalLM.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| tokenizer.pad_token = tokenizer.eos_token | |
| # Load dialogue dataset | |
| dataset = load_dataset("HuggingFaceH4/ultrachat", split="train[:1%]") # Use 1% for demo | |
| # Preprocess dataset | |
| def preprocess(examples): | |
| prompts = [f"User: {ex['prompt']} Assistant: {ex['response']}" for ex in examples] | |
| return tokenizer(prompts, truncation=True, padding="max_length", max_length=512) | |
| tokenized_dataset = dataset.map(preprocess, batched=True) | |
| # Training arguments | |
| training_args = TrainingArguments( | |
| output_dir="./evo_finetuned", | |
| per_device_train_batch_size=4, | |
| num_train_epochs=3, | |
| save_steps=1000, | |
| save_total_limit=2, | |
| ) | |
| # Trainer | |
| trainer = Trainer( | |
| model=model, | |
| args=training_args, | |
| train_dataset=tokenized_dataset, | |
| ) | |
| # Fine-tune | |
| trainer.train() | |
| # Save model | |
| model.save_pretrained("evo_finetuned") | |
| tokenizer.save_pretrained("evo_finetuned") |