Spaces:
Runtime error
Runtime error
Create finetune.py
Browse files- finetune.py +41 -0
finetune.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, Trainer, TrainingArguments
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
|
| 4 |
+
# Load model and tokenizer
|
| 5 |
+
model_name = "distilgpt2"
|
| 6 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 9 |
+
|
| 10 |
+
# Load dialogue dataset
|
| 11 |
+
dataset = load_dataset("HuggingFaceH4/ultrachat", split="train[:1%]") # Use 1% for demo
|
| 12 |
+
|
| 13 |
+
# Preprocess dataset
|
| 14 |
+
def preprocess(examples):
|
| 15 |
+
prompts = [f"User: {ex['prompt']} Assistant: {ex['response']}" for ex in examples]
|
| 16 |
+
return tokenizer(prompts, truncation=True, padding="max_length", max_length=512)
|
| 17 |
+
|
| 18 |
+
tokenized_dataset = dataset.map(preprocess, batched=True)
|
| 19 |
+
|
| 20 |
+
# Training arguments
|
| 21 |
+
training_args = TrainingArguments(
|
| 22 |
+
output_dir="./evo_finetuned",
|
| 23 |
+
per_device_train_batch_size=4,
|
| 24 |
+
num_train_epochs=3,
|
| 25 |
+
save_steps=1000,
|
| 26 |
+
save_total_limit=2,
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
# Trainer
|
| 30 |
+
trainer = Trainer(
|
| 31 |
+
model=model,
|
| 32 |
+
args=training_args,
|
| 33 |
+
train_dataset=tokenized_dataset,
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
# Fine-tune
|
| 37 |
+
trainer.train()
|
| 38 |
+
|
| 39 |
+
# Save model
|
| 40 |
+
model.save_pretrained("evo_finetuned")
|
| 41 |
+
tokenizer.save_pretrained("evo_finetuned")
|