Spaces:
Sleeping
Sleeping
| import matplotlib.pyplot as plt # type: ignore | |
| import pandas as pd | |
| import re | |
| def create_design_plot(fasta_file_path): | |
| """ | |
| Parses the MPNN fasta file and returns a Matplotlib figure. | |
| """ | |
| data = [] | |
| with open(fasta_file_path, 'r') as f: | |
| content = f.read() | |
| # Extract score (local score, not global_score) and recovery from headers | |
| # Example: >T=0.1, sample=1, score=0.7880, global_score=1.3897, seq_recovery=0.4295 | |
| # We want to capture the local "score=" value, not "global_score=" | |
| pattern = r"score=([\d\.]+)(?:,\s+global_score=[\d\.]+)?,\s+seq_recovery=([\d\.]+)" | |
| for line in content.split('\n'): | |
| if line.startswith(">") and "score=" in line and "seq_recovery" in line: | |
| # Make sure we're not matching global_score by checking the pattern order | |
| match = re.search(pattern, line) | |
| if match: | |
| # Verify we got the local score (should be before global_score if present) | |
| score_val = float(match.group(1)) | |
| recovery_val = float(match.group(2)) | |
| data.append({ | |
| "Score": score_val, | |
| "Recovery": recovery_val | |
| }) | |
| df = pd.DataFrame(data) | |
| # Create the Plot | |
| fig, ax = plt.subplots(figsize=(8, 5)) | |
| ax.scatter(df['Score'], df['Recovery'], color='black', alpha=0.6, s=80, edgecolors='white') | |
| # Highlight the Lead Candidate (Lowest Score) with a gold star | |
| best = df.loc[df['Score'].idxmin()] | |
| ax.scatter(best['Score'], best['Recovery'], marker='*', color='gold', s=400, edgecolors='black', linewidths=1.5, label="Lead Candidate", zorder=10) | |
| ax.set_title("BroteinShake: Design Evolution (N=20)", fontsize=14) | |
| ax.set_xlabel("ProteinMPNN Score (Lower = More Stable)", fontsize=10) | |
| ax.set_ylabel("Sequence Recovery (%)", fontsize=10) | |
| ax.legend() | |
| ax.grid(True, linestyle='--', alpha=0.5) | |
| return fig | |
| def create_protein_viewer(pdb_file_path): | |
| """ | |
| Generates HTML/JS for a 3D protein viewer using 3Dmol.js. | |
| """ | |
| with open(pdb_file_path, 'r') as f: | |
| pdb_content = f.read().replace('\n', '\\n') | |
| html_content = f""" | |
| <div id="container-3d" style="height: 500px; width: 100%; position: relative;"></div> | |
| <script> | |
| (function() {{ | |
| // Wait for 3Dmol to be loaded (from head) | |
| function initViewer() {{ | |
| if (typeof $3Dmol === 'undefined') {{ | |
| setTimeout(initViewer, 100); | |
| return; | |
| }} | |
| let element = document.getElementById('container-3d'); | |
| if (!element) return; | |
| let config = {{ backgroundColor: 'white' }}; | |
| let viewer = $3Dmol.createViewer(element, config); | |
| let pdbData = `{pdb_content}`; | |
| viewer.addModel(pdbData, "pdb"); | |
| viewer.setStyle({{}}, {{cartoon: {{color: 'spectrum'}}}}); | |
| viewer.zoomTo(); | |
| viewer.render(); | |
| }} | |
| if (document.readyState === 'loading') {{ | |
| document.addEventListener('DOMContentLoaded', initViewer); | |
| }} else {{ | |
| initViewer(); | |
| }} | |
| }})(); | |
| </script> | |
| """ | |
| return html_content |