import matplotlib.pyplot as plt # type: ignore import pandas as pd import re def create_design_plot(fasta_file_path): """ Parses the MPNN fasta file and returns a Matplotlib figure. """ data = [] with open(fasta_file_path, 'r') as f: content = f.read() # Extract score (local score, not global_score) and recovery from headers # Example: >T=0.1, sample=1, score=0.7880, global_score=1.3897, seq_recovery=0.4295 # We want to capture the local "score=" value, not "global_score=" pattern = r"score=([\d\.]+)(?:,\s+global_score=[\d\.]+)?,\s+seq_recovery=([\d\.]+)" for line in content.split('\n'): if line.startswith(">") and "score=" in line and "seq_recovery" in line: # Make sure we're not matching global_score by checking the pattern order match = re.search(pattern, line) if match: # Verify we got the local score (should be before global_score if present) score_val = float(match.group(1)) recovery_val = float(match.group(2)) data.append({ "Score": score_val, "Recovery": recovery_val }) df = pd.DataFrame(data) # Create the Plot fig, ax = plt.subplots(figsize=(8, 5)) ax.scatter(df['Score'], df['Recovery'], color='black', alpha=0.6, s=80, edgecolors='white') # Highlight the Lead Candidate (Lowest Score) with a gold star best = df.loc[df['Score'].idxmin()] ax.scatter(best['Score'], best['Recovery'], marker='*', color='gold', s=400, edgecolors='black', linewidths=1.5, label="Lead Candidate", zorder=10) ax.set_title("BroteinShake: Design Evolution (N=20)", fontsize=14) ax.set_xlabel("ProteinMPNN Score (Lower = More Stable)", fontsize=10) ax.set_ylabel("Sequence Recovery (%)", fontsize=10) ax.legend() ax.grid(True, linestyle='--', alpha=0.5) return fig def create_protein_viewer(pdb_file_path): """ Generates HTML/JS for a 3D protein viewer using 3Dmol.js. """ with open(pdb_file_path, 'r') as f: pdb_content = f.read().replace('\n', '\\n') html_content = f"""
""" return html_content