Description
Pretrained scVI integration model for the Functional CAR-T Cell Atlas
Model properties
Many model properties are in the model tags. Some more are listed below.
model_init_params:
{
"n_hidden": 128,
"n_latent": 30,
"n_layers": 2,
"dropout_rate": 0.1,
"dispersion": "gene",
"gene_likelihood": "nb",
"latent_distribution": "normal"
}
model_setup_anndata_args:
{
"layer": "counts",
"batch_key": "Product_norm",
"labels_key": null,
"size_factor_key": null,
"categorical_covariate_keys": [
"orig_ident"
],
"continuous_covariate_keys": null
}
model_summary_stats:
| Summary Stat Key | Value |
|---|---|
| n_batch | 182 |
| n_cells | 414619 |
| n_extra_categorical_covs | 1 |
| n_extra_continuous_covs | 0 |
| n_labels | 1 |
| n_vars | 2000 |
model_data_registry:
| Registry Key | scvi-tools Location |
|---|---|
| X | adata.layers['counts'] |
| batch | adata.obs['_scvi_batch'] |
| extra_categorical_covs | adata.obsm['_scvi_extra_categorical_covs'] |
| labels | adata.obs['_scvi_labels'] |
model_parent_module: scvi.model
data_is_minified: True
Training data
This is an optional link to where the training data is stored if it is too large to host on the huggingface Model hub.
Training data url: https://doi.org/10.5281/zenodo.17213452
Training code
This is an optional link to the code used to train the model.
Training code url: https://github.com/ML4BM-Lab/Functional-cart-atlas
References
Reference pending - manuscript in preparation.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support