jaffe_V2_100_1
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.6446
- Accuracy: 0.7333
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| No log | 1.0 | 1 | 2.2977 | 0.1333 |
| No log | 2.0 | 2 | 2.0741 | 0.1 |
| No log | 3.0 | 3 | 2.0275 | 0.2333 |
| No log | 4.0 | 4 | 2.1234 | 0.0667 |
| No log | 5.0 | 5 | 2.0852 | 0.0333 |
| No log | 6.0 | 6 | 2.0259 | 0.1667 |
| No log | 7.0 | 7 | 2.0362 | 0.2667 |
| No log | 8.0 | 8 | 2.0153 | 0.2333 |
| No log | 9.0 | 9 | 1.7472 | 0.3333 |
| 1.9971 | 10.0 | 10 | 1.9598 | 0.2 |
| 1.9971 | 11.0 | 11 | 1.9367 | 0.3333 |
| 1.9971 | 12.0 | 12 | 1.8312 | 0.3333 |
| 1.9971 | 13.0 | 13 | 1.7299 | 0.3 |
| 1.9971 | 14.0 | 14 | 1.6306 | 0.4333 |
| 1.9971 | 15.0 | 15 | 1.5377 | 0.4333 |
| 1.9971 | 16.0 | 16 | 1.4326 | 0.5333 |
| 1.9971 | 17.0 | 17 | 1.5047 | 0.4 |
| 1.9971 | 18.0 | 18 | 1.4929 | 0.4333 |
| 1.9971 | 19.0 | 19 | 1.5326 | 0.4 |
| 1.5087 | 20.0 | 20 | 1.5017 | 0.4667 |
| 1.5087 | 21.0 | 21 | 1.4978 | 0.4333 |
| 1.5087 | 22.0 | 22 | 1.2678 | 0.5667 |
| 1.5087 | 23.0 | 23 | 1.2538 | 0.5 |
| 1.5087 | 24.0 | 24 | 1.2526 | 0.5 |
| 1.5087 | 25.0 | 25 | 1.3660 | 0.4 |
| 1.5087 | 26.0 | 26 | 1.3206 | 0.5 |
| 1.5087 | 27.0 | 27 | 1.2053 | 0.4333 |
| 1.5087 | 28.0 | 28 | 1.1457 | 0.6333 |
| 1.5087 | 29.0 | 29 | 1.0761 | 0.6 |
| 1.007 | 30.0 | 30 | 1.1556 | 0.5 |
| 1.007 | 31.0 | 31 | 1.0172 | 0.6333 |
| 1.007 | 32.0 | 32 | 1.1851 | 0.5333 |
| 1.007 | 33.0 | 33 | 1.0535 | 0.5333 |
| 1.007 | 34.0 | 34 | 1.1161 | 0.5333 |
| 1.007 | 35.0 | 35 | 0.9928 | 0.5667 |
| 1.007 | 36.0 | 36 | 0.9970 | 0.7 |
| 1.007 | 37.0 | 37 | 1.1090 | 0.4667 |
| 1.007 | 38.0 | 38 | 0.9536 | 0.6 |
| 1.007 | 39.0 | 39 | 1.2752 | 0.5 |
| 0.6664 | 40.0 | 40 | 0.8948 | 0.6667 |
| 0.6664 | 41.0 | 41 | 0.8891 | 0.6667 |
| 0.6664 | 42.0 | 42 | 0.8382 | 0.6333 |
| 0.6664 | 43.0 | 43 | 0.7498 | 0.7 |
| 0.6664 | 44.0 | 44 | 0.8668 | 0.6667 |
| 0.6664 | 45.0 | 45 | 1.1427 | 0.6667 |
| 0.6664 | 46.0 | 46 | 0.8066 | 0.6 |
| 0.6664 | 47.0 | 47 | 0.9161 | 0.6333 |
| 0.6664 | 48.0 | 48 | 0.8266 | 0.6 |
| 0.6664 | 49.0 | 49 | 0.9943 | 0.5667 |
| 0.469 | 50.0 | 50 | 0.6892 | 0.6333 |
| 0.469 | 51.0 | 51 | 0.7529 | 0.7667 |
| 0.469 | 52.0 | 52 | 0.9834 | 0.5333 |
| 0.469 | 53.0 | 53 | 0.8994 | 0.6 |
| 0.469 | 54.0 | 54 | 0.6394 | 0.7667 |
| 0.469 | 55.0 | 55 | 0.6854 | 0.7 |
| 0.469 | 56.0 | 56 | 0.6051 | 0.8 |
| 0.469 | 57.0 | 57 | 0.8493 | 0.6667 |
| 0.469 | 58.0 | 58 | 0.6897 | 0.7333 |
| 0.469 | 59.0 | 59 | 0.6698 | 0.6667 |
| 0.3604 | 60.0 | 60 | 0.6562 | 0.7667 |
| 0.3604 | 61.0 | 61 | 0.7638 | 0.6 |
| 0.3604 | 62.0 | 62 | 0.6217 | 0.7333 |
| 0.3604 | 63.0 | 63 | 0.7635 | 0.7 |
| 0.3604 | 64.0 | 64 | 0.7777 | 0.7667 |
| 0.3604 | 65.0 | 65 | 0.6505 | 0.8 |
| 0.3604 | 66.0 | 66 | 0.6469 | 0.7333 |
| 0.3604 | 67.0 | 67 | 0.7266 | 0.7333 |
| 0.3604 | 68.0 | 68 | 0.7613 | 0.6667 |
| 0.3604 | 69.0 | 69 | 0.4647 | 0.8 |
| 0.2726 | 70.0 | 70 | 0.6390 | 0.7 |
| 0.2726 | 71.0 | 71 | 0.6155 | 0.7333 |
| 0.2726 | 72.0 | 72 | 0.6113 | 0.8 |
| 0.2726 | 73.0 | 73 | 0.5648 | 0.8 |
| 0.2726 | 74.0 | 74 | 0.7042 | 0.7 |
| 0.2726 | 75.0 | 75 | 0.6263 | 0.8333 |
| 0.2726 | 76.0 | 76 | 0.7464 | 0.7333 |
| 0.2726 | 77.0 | 77 | 0.7640 | 0.6333 |
| 0.2726 | 78.0 | 78 | 0.7129 | 0.7667 |
| 0.2726 | 79.0 | 79 | 0.7362 | 0.7333 |
| 0.2157 | 80.0 | 80 | 0.7122 | 0.7667 |
| 0.2157 | 81.0 | 81 | 0.5565 | 0.7333 |
| 0.2157 | 82.0 | 82 | 0.6734 | 0.7667 |
| 0.2157 | 83.0 | 83 | 0.6057 | 0.7 |
| 0.2157 | 84.0 | 84 | 0.5287 | 0.7667 |
| 0.2157 | 85.0 | 85 | 0.7490 | 0.7333 |
| 0.2157 | 86.0 | 86 | 0.5841 | 0.7333 |
| 0.2157 | 87.0 | 87 | 0.5641 | 0.7667 |
| 0.2157 | 88.0 | 88 | 0.8243 | 0.6667 |
| 0.2157 | 89.0 | 89 | 0.5287 | 0.7667 |
| 0.1946 | 90.0 | 90 | 1.0455 | 0.7 |
| 0.1946 | 91.0 | 91 | 0.6091 | 0.7333 |
| 0.1946 | 92.0 | 92 | 0.5152 | 0.7667 |
| 0.1946 | 93.0 | 93 | 0.5850 | 0.8 |
| 0.1946 | 94.0 | 94 | 0.5806 | 0.7333 |
| 0.1946 | 95.0 | 95 | 0.6017 | 0.7667 |
| 0.1946 | 96.0 | 96 | 0.5606 | 0.7667 |
| 0.1946 | 97.0 | 97 | 0.5931 | 0.7667 |
| 0.1946 | 98.0 | 98 | 0.5299 | 0.7667 |
| 0.1946 | 99.0 | 99 | 0.7117 | 0.7333 |
| 0.1647 | 100.0 | 100 | 0.6446 | 0.7333 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 9
Model tree for ricardoSLabs/jaffe_V2_100_1
Base model
WinKawaks/vit-tiny-patch16-224Evaluation results
- Accuracy on imagefoldervalidation set self-reported0.733