jaffe_V2_100_1

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6446
  • Accuracy: 0.7333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 2.2977 0.1333
No log 2.0 2 2.0741 0.1
No log 3.0 3 2.0275 0.2333
No log 4.0 4 2.1234 0.0667
No log 5.0 5 2.0852 0.0333
No log 6.0 6 2.0259 0.1667
No log 7.0 7 2.0362 0.2667
No log 8.0 8 2.0153 0.2333
No log 9.0 9 1.7472 0.3333
1.9971 10.0 10 1.9598 0.2
1.9971 11.0 11 1.9367 0.3333
1.9971 12.0 12 1.8312 0.3333
1.9971 13.0 13 1.7299 0.3
1.9971 14.0 14 1.6306 0.4333
1.9971 15.0 15 1.5377 0.4333
1.9971 16.0 16 1.4326 0.5333
1.9971 17.0 17 1.5047 0.4
1.9971 18.0 18 1.4929 0.4333
1.9971 19.0 19 1.5326 0.4
1.5087 20.0 20 1.5017 0.4667
1.5087 21.0 21 1.4978 0.4333
1.5087 22.0 22 1.2678 0.5667
1.5087 23.0 23 1.2538 0.5
1.5087 24.0 24 1.2526 0.5
1.5087 25.0 25 1.3660 0.4
1.5087 26.0 26 1.3206 0.5
1.5087 27.0 27 1.2053 0.4333
1.5087 28.0 28 1.1457 0.6333
1.5087 29.0 29 1.0761 0.6
1.007 30.0 30 1.1556 0.5
1.007 31.0 31 1.0172 0.6333
1.007 32.0 32 1.1851 0.5333
1.007 33.0 33 1.0535 0.5333
1.007 34.0 34 1.1161 0.5333
1.007 35.0 35 0.9928 0.5667
1.007 36.0 36 0.9970 0.7
1.007 37.0 37 1.1090 0.4667
1.007 38.0 38 0.9536 0.6
1.007 39.0 39 1.2752 0.5
0.6664 40.0 40 0.8948 0.6667
0.6664 41.0 41 0.8891 0.6667
0.6664 42.0 42 0.8382 0.6333
0.6664 43.0 43 0.7498 0.7
0.6664 44.0 44 0.8668 0.6667
0.6664 45.0 45 1.1427 0.6667
0.6664 46.0 46 0.8066 0.6
0.6664 47.0 47 0.9161 0.6333
0.6664 48.0 48 0.8266 0.6
0.6664 49.0 49 0.9943 0.5667
0.469 50.0 50 0.6892 0.6333
0.469 51.0 51 0.7529 0.7667
0.469 52.0 52 0.9834 0.5333
0.469 53.0 53 0.8994 0.6
0.469 54.0 54 0.6394 0.7667
0.469 55.0 55 0.6854 0.7
0.469 56.0 56 0.6051 0.8
0.469 57.0 57 0.8493 0.6667
0.469 58.0 58 0.6897 0.7333
0.469 59.0 59 0.6698 0.6667
0.3604 60.0 60 0.6562 0.7667
0.3604 61.0 61 0.7638 0.6
0.3604 62.0 62 0.6217 0.7333
0.3604 63.0 63 0.7635 0.7
0.3604 64.0 64 0.7777 0.7667
0.3604 65.0 65 0.6505 0.8
0.3604 66.0 66 0.6469 0.7333
0.3604 67.0 67 0.7266 0.7333
0.3604 68.0 68 0.7613 0.6667
0.3604 69.0 69 0.4647 0.8
0.2726 70.0 70 0.6390 0.7
0.2726 71.0 71 0.6155 0.7333
0.2726 72.0 72 0.6113 0.8
0.2726 73.0 73 0.5648 0.8
0.2726 74.0 74 0.7042 0.7
0.2726 75.0 75 0.6263 0.8333
0.2726 76.0 76 0.7464 0.7333
0.2726 77.0 77 0.7640 0.6333
0.2726 78.0 78 0.7129 0.7667
0.2726 79.0 79 0.7362 0.7333
0.2157 80.0 80 0.7122 0.7667
0.2157 81.0 81 0.5565 0.7333
0.2157 82.0 82 0.6734 0.7667
0.2157 83.0 83 0.6057 0.7
0.2157 84.0 84 0.5287 0.7667
0.2157 85.0 85 0.7490 0.7333
0.2157 86.0 86 0.5841 0.7333
0.2157 87.0 87 0.5641 0.7667
0.2157 88.0 88 0.8243 0.6667
0.2157 89.0 89 0.5287 0.7667
0.1946 90.0 90 1.0455 0.7
0.1946 91.0 91 0.6091 0.7333
0.1946 92.0 92 0.5152 0.7667
0.1946 93.0 93 0.5850 0.8
0.1946 94.0 94 0.5806 0.7333
0.1946 95.0 95 0.6017 0.7667
0.1946 96.0 96 0.5606 0.7667
0.1946 97.0 97 0.5931 0.7667
0.1946 98.0 98 0.5299 0.7667
0.1946 99.0 99 0.7117 0.7333
0.1647 100.0 100 0.6446 0.7333

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
9
Safetensors
Model size
5.53M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ricardoSLabs/jaffe_V2_100_1

Finetuned
(48)
this model

Evaluation results