Bruno Swarm Models
7 abliterated Qwen2.5-Coder models for multi-agent software development using CrewAI + Ollama.
Created with Bruno - neural behavior modification via contrastive activation analysis and orthogonalization.
Models
| Model | Base | Size | Role |
|---|---|---|---|
orchestrator-14b-f16.gguf |
Qwen2.5-Coder-14B-Instruct | 28 GB | Senior Architect / Project Manager |
frontend-3b-f16.gguf |
Qwen2.5-Coder-3B-Instruct | 5.8 GB | React / TypeScript / Tailwind |
backend-3b-f16.gguf |
Qwen2.5-Coder-3B-Instruct | 5.8 GB | FastAPI / PostgreSQL / async |
test-3b-f16.gguf |
Qwen2.5-Coder-3B-Instruct | 5.8 GB | pytest / coverage / edge cases |
security-3b-f16.gguf |
Qwen2.5-Coder-3B-Instruct | 5.8 GB | OWASP / vulnerability assessment |
docs-3b-f16.gguf |
Qwen2.5-Coder-3B-Instruct | 5.8 GB | API docs / README / guides |
devops-3b-f16.gguf |
Qwen2.5-Coder-3B-Instruct | 5.8 GB | Docker / CI-CD / IaC |
Total: ~63 GB (all F16 precision GGUF)
Abliteration Details
Each model was independently abliterated using Bruno to reduce refusal behavior while preserving coding capabilities. The 6 specialists share the same base model (Qwen2.5-Coder-3B-Instruct) but have different abliteration weights from separate optimization runs.
Orchestrator (14B):
- KL divergence: 0.47 (from base)
- Refusal reduction: 63/67 prompts answered (6% reduction)
- Optuna trials: 50
Specialists (3B):
- Each independently optimized for their domain
- All retain full coding capability
Quick Start
1. Download models and Modelfiles
# Install git-lfs
git lfs install
# Clone (63 GB download)
git clone https://huggingface.co/rawcell/bruno-swarm-models
cd bruno-swarm-models
2. Import into Ollama
Update the FROM paths in each Modelfile to point to your local GGUF files, then:
# Import each model
ollama create orchestrator -f modelfiles/Modelfile.orchestrator
ollama create frontend -f modelfiles/Modelfile.frontend
ollama create backend -f modelfiles/Modelfile.backend
ollama create test -f modelfiles/Modelfile.test
ollama create security -f modelfiles/Modelfile.security
ollama create docs -f modelfiles/Modelfile.docs
ollama create devops -f modelfiles/Modelfile.devops
3. Run with bruno-swarm CLI
pip install bruno-ai[swarm]
bruno-swarm run --task "Build a REST API with authentication"
Or use flat mode to select specific specialists:
bruno-swarm run --task "Write unit tests for auth module" --flat --agents test,security
Ollama Configuration
For multi-model operation, set these environment variables before starting Ollama:
export OLLAMA_MAX_LOADED_MODELS=3
export OLLAMA_KEEP_ALIVE=30m
Hardware Requirements
- Full swarm (hierarchical): 40+ GB VRAM (orchestrator 28GB + 1 specialist at a time)
- Specialists only (flat): 8+ GB VRAM (one 3B model at a time)
- All models loaded: 63 GB VRAM (A100 80GB or similar)
Modelfiles
The modelfiles/ directory contains Ollama Modelfile configurations for each model with tuned parameters:
num_ctx 8192(required for CrewAI system prompts)num_predict 2048for specialists,4096for orchestratortemperature 0.7,top_p 0.9,top_k 40
License
Apache 2.0 (same as base Qwen2.5-Coder models)
- Downloads last month
- -
16-bit
Model tree for rawcell/bruno-swarm-models
Base model
Qwen/Qwen2.5-14B