FFNet-78S-LowRes: Optimized for Mobile Deployment
Semantic segmentation for automotive street scenes
FFNet-78S-LowRes is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
This model is an implementation of FFNet-78S-LowRes found here.
This repository provides scripts to run FFNet-78S-LowRes on Qualcomm® devices. More details on model performance across various devices, can be found here.
Model Details
- Model Type: Model_use_case.semantic_segmentation
- Model Stats:
- Model checkpoint: ffnet78S_BCC_cityscapes_state_dict_quarts_pre_down
- Input resolution: 1024x512
- Number of output classes: 19
- Number of parameters: 26.8M
- Model size (float): 102 MB
- Model size (w8a8): 26.0 MB
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model |
|---|---|---|---|---|---|---|---|---|
| FFNet-78S-LowRes | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 49.349 ms | 1 - 166 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 49.478 ms | 5 - 137 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 23.788 ms | 1 - 242 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 24.185 ms | 6 - 171 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 13.719 ms | 1 - 3 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 13.397 ms | 6 - 8 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 7.99 ms | 0 - 51 MB | NPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 81.494 ms | 1 - 166 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 81.247 ms | 1 - 134 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 49.349 ms | 1 - 166 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 49.478 ms | 5 - 137 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 13.666 ms | 1 - 3 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 13.513 ms | 6 - 8 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 19.843 ms | 1 - 164 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 19.771 ms | 0 - 131 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 13.624 ms | 1 - 3 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 13.52 ms | 6 - 8 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 81.494 ms | 1 - 166 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 81.247 ms | 1 - 134 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 9.028 ms | 1 - 250 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 8.969 ms | 6 - 174 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 5.783 ms | 7 - 161 MB | NPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 7.652 ms | 1 - 165 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 7.566 ms | 6 - 139 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 6.866 ms | 2 - 121 MB | NPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 6.71 ms | 0 - 173 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 6.695 ms | 6 - 146 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 4.033 ms | 4 - 125 MB | NPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 14.191 ms | 6 - 6 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.176 ms | 46 - 46 MB | NPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | TFLITE | 30.495 ms | 0 - 163 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | QNN_DLC | 35.379 ms | 2 - 167 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | Dragonwing Q-6690 MTP | Qualcomm® Qcm6690 | ONNX | 117.255 ms | 64 - 80 MB | CPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | TFLITE | 9.489 ms | 0 - 30 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | QNN_DLC | 14.754 ms | 1 - 4 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | Dragonwing RB3 Gen 2 Vision Kit | Qualcomm® QCS6490 | ONNX | 108.365 ms | 56 - 119 MB | CPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 7.259 ms | 0 - 145 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 10.599 ms | 2 - 148 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.491 ms | 0 - 197 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 7.211 ms | 2 - 195 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.754 ms | 0 - 2 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 4.676 ms | 2 - 4 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | ONNX | 2.978 ms | 0 - 29 MB | NPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 3.267 ms | 0 - 145 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 22.402 ms | 2 - 148 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 72.291 ms | 0 - 115 MB | GPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | ONNX | 98.948 ms | 53 - 88 MB | CPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 7.259 ms | 0 - 145 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 10.599 ms | 2 - 148 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.755 ms | 0 - 2 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 4.68 ms | 2 - 4 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.419 ms | 0 - 149 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 6.572 ms | 2 - 154 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.763 ms | 0 - 2 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 4.687 ms | 2 - 3 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 3.267 ms | 0 - 145 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 22.402 ms | 2 - 148 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 2.002 ms | 0 - 198 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 3.311 ms | 2 - 199 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.136 ms | 0 - 188 MB | NPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | TFLITE | 1.497 ms | 0 - 149 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | QNN_DLC | 2.265 ms | 2 - 150 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | Samsung Galaxy S25 | Snapdragon® 8 Elite For Galaxy Mobile | ONNX | 1.773 ms | 0 - 132 MB | NPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | TFLITE | 4.173 ms | 0 - 162 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | QNN_DLC | 7.346 ms | 2 - 168 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | Snapdragon 7 Gen 4 QRD | Snapdragon® 7 Gen 4 Mobile | ONNX | 117.626 ms | 61 - 79 MB | CPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | TFLITE | 1.293 ms | 0 - 146 MB | NPU | FFNet-78S-LowRes.tflite |
| FFNet-78S-LowRes | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | QNN_DLC | 1.846 ms | 2 - 150 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | Snapdragon 8 Elite Gen 5 QRD | Snapdragon® 8 Elite Gen5 Mobile | ONNX | 1.526 ms | 1 - 130 MB | NPU | FFNet-78S-LowRes.onnx.zip |
| FFNet-78S-LowRes | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 5.078 ms | 2 - 2 MB | NPU | FFNet-78S-LowRes.dlc |
| FFNet-78S-LowRes | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.964 ms | 25 - 25 MB | NPU | FFNet-78S-LowRes.onnx.zip |
Installation
Install the package via pip:
# NOTE: 3.10 <= PYTHON_VERSION < 3.14 is supported.
pip install "qai-hub-models[ffnet-78s-lowres]"
Configure Qualcomm® AI Hub Workbench to run this model on a cloud-hosted device
Sign-in to Qualcomm® AI Hub Workbench with your
Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.
With this API token, you can configure your client to run models on the cloud hosted devices.
qai-hub configure --api_token API_TOKEN
Navigate to docs for more information.
Demo off target
The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.
python -m qai_hub_models.models.ffnet_78s_lowres.demo
The above demo runs a reference implementation of pre-processing, model inference, and post processing.
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ffnet_78s_lowres.demo
Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:
- Performance check on-device on a cloud-hosted device
- Downloads compiled assets that can be deployed on-device for Android.
- Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.ffnet_78s_lowres.export
How does this work?
This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:
Step 1: Compile model for on-device deployment
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the jit.trace and then call the submit_compile_job API.
import torch
import qai_hub as hub
from qai_hub_models.models.ffnet_78s_lowres import Model
# Load the model
torch_model = Model.from_pretrained()
# Device
device = hub.Device("Samsung Galaxy S25")
# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
# Compile model on a specific device
compile_job = hub.submit_compile_job(
model=pt_model,
device=device,
input_specs=torch_model.get_input_spec(),
)
# Get target model to run on-device
target_model = compile_job.get_target_model()
Step 2: Performance profiling on cloud-hosted device
After compiling models from step 1. Models can be profiled model on-device using the
target_model. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
profile_job = hub.submit_profile_job(
model=target_model,
device=device,
)
Step 3: Verify on-device accuracy
To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
model=target_model,
device=device,
inputs=input_data,
)
on_device_output = inference_job.download_output_data()
With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.
Note: This on-device profiling and inference requires access to Qualcomm® AI Hub Workbench. Sign up for access.
Run demo on a cloud-hosted device
You can also run the demo on-device.
python -m qai_hub_models.models.ffnet_78s_lowres.demo --eval-mode on-device
NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).
%run -m qai_hub_models.models.ffnet_78s_lowres.demo -- --eval-mode on-device
Deploying compiled model to Android
The models can be deployed using multiple runtimes:
TensorFlow Lite (
.tfliteexport): This tutorial provides a guide to deploy the .tflite model in an Android application.QNN (
.soexport ): This sample app provides instructions on how to use the.soshared library in an Android application.
View on Qualcomm® AI Hub
Get more details on FFNet-78S-LowRes's performance across various devices here. Explore all available models on Qualcomm® AI Hub
License
- The license for the original implementation of FFNet-78S-LowRes can be found here.
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
- Downloads last month
- 229
