|
|
import tensorflow as tf |
|
|
import keras |
|
|
from keras import layers, Model |
|
|
import numpy as np |
|
|
import tensorflow_probability as tfp |
|
|
import os |
|
|
import traceback |
|
|
|
|
|
tfd = tfp.distributions |
|
|
|
|
|
@tf.keras.utils.register_keras_serializable() |
|
|
class Actor(Model): |
|
|
def __init__(self, obs_shape, action_size, hidden_layer_sizes=[512, 512, 512], **kwargs): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
if len(obs_shape) > 1: |
|
|
self.flatten = layers.Flatten(input_shape=obs_shape) |
|
|
|
|
|
self.flatten(tf.zeros((1,) + obs_shape)) |
|
|
else: |
|
|
self.flatten = None |
|
|
|
|
|
self.dense_layers = [] |
|
|
for size in hidden_layer_sizes: |
|
|
self.dense_layers.append(layers.Dense(size, activation='relu')) |
|
|
self.logits = layers.Dense(action_size) |
|
|
|
|
|
self._obs_shape = obs_shape |
|
|
self._action_size = action_size |
|
|
self._hidden_layer_sizes = hidden_layer_sizes |
|
|
|
|
|
def call(self, inputs): |
|
|
|
|
|
x = self.flatten(inputs) if self.flatten else inputs |
|
|
for layer in self.dense_layers: |
|
|
x = layer(x) |
|
|
return self.logits(x) |
|
|
|
|
|
def get_config(self): |
|
|
config = super().get_config() |
|
|
config.update({ |
|
|
'obs_shape': self._obs_shape, |
|
|
'action_size': self._action_size, |
|
|
'hidden_layer_sizes': self._hidden_layer_sizes |
|
|
}) |
|
|
return config |
|
|
|
|
|
@tf.keras.utils.register_keras_serializable() |
|
|
class Critic(Model): |
|
|
def __init__(self, obs_shape, hidden_layer_sizes=[512, 512, 512], **kwargs): |
|
|
super().__init__(**kwargs) |
|
|
|
|
|
if len(obs_shape) > 1: |
|
|
self.flatten = layers.Flatten(input_shape=obs_shape) |
|
|
self.flatten(tf.zeros((1,) + obs_shape)) |
|
|
else: |
|
|
self.flatten = None |
|
|
|
|
|
self.dense_layers = [] |
|
|
for size in hidden_layer_sizes: |
|
|
self.dense_layers.append(layers.Dense(size, activation='relu')) |
|
|
self.value = layers.Dense(1) |
|
|
|
|
|
self._obs_shape = obs_shape |
|
|
self._hidden_layer_sizes = hidden_layer_sizes |
|
|
|
|
|
def call(self, inputs): |
|
|
x = self.flatten(inputs) if self.flatten else inputs |
|
|
for layer in self.dense_layers: |
|
|
x = layer(x) |
|
|
return self.value(x) |
|
|
|
|
|
def get_config(self): |
|
|
config = super().get_config() |
|
|
config.update({ |
|
|
'obs_shape': self._obs_shape, |
|
|
'hidden_layer_sizes': self._hidden_layer_sizes |
|
|
}) |
|
|
return config |
|
|
|
|
|
class PPOAgent: |
|
|
def __init__(self, observation_space_shape, action_space_size, |
|
|
actor_lr=3e-4, critic_lr=3e-4, gamma=0.99, |
|
|
gae_lambda=0.95, clip_epsilon=0.2, |
|
|
num_epochs_per_update=10, batch_size=64, |
|
|
hidden_layer_sizes=[512, 512, 512]): |
|
|
|
|
|
self.gamma = gamma |
|
|
self.gae_lambda = gae_lambda |
|
|
self.clip_epsilon = clip_epsilon |
|
|
self.num_epochs_per_update = num_epochs_per_update |
|
|
self.batch_size = batch_size |
|
|
|
|
|
self.observation_space_shape = observation_space_shape |
|
|
self.action_space_size = action_space_size |
|
|
|
|
|
self.actor = Actor(observation_space_shape, action_space_size, hidden_layer_sizes=hidden_layer_sizes) |
|
|
self.critic = Critic(observation_space_shape, hidden_layer_sizes=hidden_layer_sizes) |
|
|
|
|
|
self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=actor_lr) |
|
|
self.critic_optimizer = tf.keras.optimizers.Adam(learning_rate=critic_lr) |
|
|
|
|
|
self.states = [] |
|
|
self.actions = [] |
|
|
self.rewards = [] |
|
|
self.next_states = [] |
|
|
self.dones = [] |
|
|
self.log_probs = [] |
|
|
self.values = [] |
|
|
|
|
|
dummy_obs = tf.zeros((1,) + observation_space_shape, dtype=tf.float32) |
|
|
self.actor(dummy_obs) |
|
|
self.critic(dummy_obs) |
|
|
|
|
|
def remember(self, state, action, reward, next_state, done, log_prob, value): |
|
|
self.states.append(state) |
|
|
self.actions.append(action) |
|
|
self.rewards.append(reward) |
|
|
self.next_states.append(next_state) |
|
|
self.dones.append(done) |
|
|
self.log_probs.append(log_prob) |
|
|
self.values.append(value) |
|
|
|
|
|
@tf.function |
|
|
|
|
|
def _choose_action_tf(self, observation, action_mask): |
|
|
observation = tf.expand_dims(tf.convert_to_tensor(observation, dtype=tf.float32), 0) |
|
|
|
|
|
pi_logits = self.actor(observation) |
|
|
|
|
|
masked_logits = tf.where(action_mask, pi_logits, -1e9) |
|
|
|
|
|
value = self.critic(observation) |
|
|
|
|
|
distribution = tfd.Categorical(logits=masked_logits) |
|
|
|
|
|
action = distribution.sample() |
|
|
log_prob = distribution.log_prob(action) |
|
|
|
|
|
return action, log_prob, value |
|
|
|
|
|
def choose_action(self, observation, action_mask): |
|
|
action_tensor, log_prob_tensor, value_tensor = self._choose_action_tf(observation, action_mask) |
|
|
|
|
|
return action_tensor.numpy(), log_prob_tensor.numpy(), value_tensor.numpy()[0,0] |
|
|
|
|
|
def calculate_advantages_and_returns(self): |
|
|
rewards = np.array(self.rewards, dtype=np.float32) |
|
|
values = np.array(self.values, dtype=np.float32) |
|
|
dones = np.array(self.dones, dtype=np.float32) |
|
|
|
|
|
last_next_state_value = self.critic(tf.expand_dims(tf.convert_to_tensor(self.next_states[-1], dtype=tf.float32), 0)).numpy()[0,0] if not dones[-1] else 0 |
|
|
next_values = np.append(values[1:], last_next_state_value) |
|
|
|
|
|
advantages = [] |
|
|
returns = [] |
|
|
|
|
|
last_advantage = 0 |
|
|
for t in reversed(range(len(rewards))): |
|
|
delta = rewards[t] + self.gamma * next_values[t] * (1 - dones[t]) - values[t] |
|
|
|
|
|
advantage = delta + self.gae_lambda * self.gamma * (1 - dones[t]) * last_advantage |
|
|
advantages.insert(0, advantage) |
|
|
|
|
|
returns.insert(0, advantage + values[t]) |
|
|
last_advantage = advantage |
|
|
|
|
|
return np.array(advantages, dtype=np.float32), np.array(returns, dtype=np.float32) |
|
|
|
|
|
def learn(self): |
|
|
if not self.states: |
|
|
return |
|
|
|
|
|
states = tf.convert_to_tensor(np.array(self.states), dtype=tf.float32) |
|
|
actions = tf.convert_to_tensor(np.array(self.actions), dtype=tf.int32) |
|
|
old_log_probs = tf.convert_to_tensor(np.array(self.log_probs), dtype=tf.float32) |
|
|
|
|
|
advantages, returns = self.calculate_advantages_and_returns() |
|
|
advantages = (advantages - tf.reduce_mean(advantages)) / (tf.math.reduce_std(advantages) + 1e-8) |
|
|
|
|
|
dataset = tf.data.Dataset.from_tensor_slices((states, actions, old_log_probs, advantages, returns)) |
|
|
dataset = dataset.shuffle(buffer_size=len(self.states)).batch(self.batch_size) |
|
|
|
|
|
for _ in range(self.num_epochs_per_update): |
|
|
for batch_states, batch_actions, batch_old_log_probs, batch_advantages, batch_returns in dataset: |
|
|
|
|
|
with tf.GradientTape() as tape: |
|
|
current_logits = self.actor(batch_states) |
|
|
|
|
|
new_distribution = tfd.Categorical(logits=current_logits) |
|
|
|
|
|
new_log_probs = new_distribution.log_prob(batch_actions) |
|
|
ratio = tf.exp(new_log_probs - batch_old_log_probs) |
|
|
|
|
|
surrogate1 = ratio * batch_advantages |
|
|
surrogate2 = tf.clip_by_value(ratio, 1 - self.clip_epsilon, 1 + self.clip_epsilon) * batch_advantages |
|
|
|
|
|
actor_loss = -tf.reduce_mean(tf.minimum(surrogate1, surrogate2)) |
|
|
|
|
|
actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables) |
|
|
self.actor_optimizer.apply_gradients(zip(actor_grads, self.actor.trainable_variables)) |
|
|
|
|
|
with tf.GradientTape() as tape: |
|
|
new_values = self.critic(batch_states) |
|
|
critic_loss = tf.reduce_mean(tf.square(new_values - batch_returns)) |
|
|
|
|
|
critic_grads = tape.gradient(critic_loss, self.critic.trainable_variables) |
|
|
self.critic_optimizer.apply_gradients(zip(critic_grads, self.critic.trainable_variables)) |
|
|
|
|
|
self.states = [] |
|
|
self.actions = [] |
|
|
self.rewards = [] |
|
|
self.next_states = [] |
|
|
self.dones = [] |
|
|
self.log_probs = [] |
|
|
self.values = [] |
|
|
|
|
|
def save_models(self, path): |
|
|
actor_save_path = f"{path}_actor.keras" |
|
|
critic_save_path = f"{path}_critic.keras" |
|
|
print(f"\n--- Attempting to save models ---") |
|
|
print(f"Target Actor path: {os.path.abspath(actor_save_path)}") |
|
|
print(f"Target Critic path: {os.path.abspath(critic_save_path)}") |
|
|
try: |
|
|
self.actor.save(actor_save_path) |
|
|
print(f"Actor model saved successfully to {os.path.abspath(actor_save_path)}") |
|
|
except Exception as e: |
|
|
print(f"ERROR: Failed to save Actor model to {os.path.abspath(actor_save_path)}") |
|
|
print(f"Reason: {e}") |
|
|
traceback.print_exc() |
|
|
try: |
|
|
self.critic.save(critic_save_path) |
|
|
print(f"Critic model saved successfully to {os.path.abspath(critic_save_path)}") |
|
|
except Exception as e: |
|
|
print(f"ERROR: Failed to save Critic model to {os.path.abspath(critic_save_path)}") |
|
|
print(f"Reason: {e}") |
|
|
traceback.print_exc() |
|
|
print(f"--- Models save process completed ---\n") |
|
|
|
|
|
def load_models(self, path): |
|
|
|
|
|
actor_load_path = f"{path}_actor.keras" |
|
|
critic_load_path = f"{path}_critic.keras" |
|
|
actor_loaded_ok = False |
|
|
critic_loaded_ok = False |
|
|
|
|
|
custom_objects = { |
|
|
'Actor': Actor, |
|
|
'Critic': Critic |
|
|
} |
|
|
|
|
|
try: |
|
|
|
|
|
self.actor = tf.keras.models.load_model(actor_load_path, custom_objects=custom_objects) |
|
|
actor_loaded_ok = True |
|
|
print(f"Actor model loaded from: {os.path.abspath(actor_load_path)}") |
|
|
except Exception as e: |
|
|
print(f"ERROR: Failed to load Actor model from {os.path.abspath(actor_load_path)}") |
|
|
print(f"Reason: {e}") |
|
|
traceback.print_exc() |
|
|
|
|
|
try: |
|
|
self.critic = tf.keras.models.load_model(critic_load_path, custom_objects=custom_objects) |
|
|
critic_loaded_ok = True |
|
|
print(f"Critic model loaded from: {os.path.abspath(critic_load_path)}") |
|
|
except Exception as e: |
|
|
print(f"ERROR: Failed to load Critic model from {os.path.abspath(critic_load_path)}") |
|
|
print(f"Reason: {e}") |
|
|
traceback.print_exc() |
|
|
|
|
|
if actor_loaded_ok and critic_loaded_ok: |
|
|
print(f"All PPO models loaded successfully from '{path}'.") |
|
|
return True |
|
|
else: |
|
|
print(f"Warning: One or both models failed to load. The agent will use untrained models.") |
|
|
return False |
|
|
|