Create PPO_Model.py
Browse files- PPO_Model.py +276 -0
PPO_Model.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import tensorflow as tf
|
| 2 |
+
import keras
|
| 3 |
+
from keras import layers, Model
|
| 4 |
+
import numpy as np
|
| 5 |
+
import tensorflow_probability as tfp
|
| 6 |
+
import os
|
| 7 |
+
import traceback
|
| 8 |
+
|
| 9 |
+
tfd = tfp.distributions
|
| 10 |
+
|
| 11 |
+
@tf.keras.utils.register_keras_serializable()
|
| 12 |
+
class Actor(Model):
|
| 13 |
+
def __init__(self, obs_shape, action_size, hidden_layer_sizes=[512, 512, 512], **kwargs):
|
| 14 |
+
super().__init__(**kwargs)
|
| 15 |
+
|
| 16 |
+
if len(obs_shape) > 1:
|
| 17 |
+
self.flatten = layers.Flatten(input_shape=obs_shape)
|
| 18 |
+
|
| 19 |
+
self.flatten(tf.zeros((1,) + obs_shape))
|
| 20 |
+
else:
|
| 21 |
+
self.flatten = None
|
| 22 |
+
|
| 23 |
+
self.dense_layers = []
|
| 24 |
+
for size in hidden_layer_sizes:
|
| 25 |
+
self.dense_layers.append(layers.Dense(size, activation='relu'))
|
| 26 |
+
self.logits = layers.Dense(action_size)
|
| 27 |
+
|
| 28 |
+
self._obs_shape = obs_shape
|
| 29 |
+
self._action_size = action_size
|
| 30 |
+
self._hidden_layer_sizes = hidden_layer_sizes
|
| 31 |
+
|
| 32 |
+
def call(self, inputs):
|
| 33 |
+
|
| 34 |
+
x = self.flatten(inputs) if self.flatten else inputs
|
| 35 |
+
for layer in self.dense_layers:
|
| 36 |
+
x = layer(x)
|
| 37 |
+
return self.logits(x)
|
| 38 |
+
|
| 39 |
+
def get_config(self):
|
| 40 |
+
config = super().get_config()
|
| 41 |
+
config.update({
|
| 42 |
+
'obs_shape': self._obs_shape,
|
| 43 |
+
'action_size': self._action_size,
|
| 44 |
+
'hidden_layer_sizes': self._hidden_layer_sizes
|
| 45 |
+
})
|
| 46 |
+
return config
|
| 47 |
+
|
| 48 |
+
@tf.keras.utils.register_keras_serializable()
|
| 49 |
+
class Critic(Model):
|
| 50 |
+
def __init__(self, obs_shape, hidden_layer_sizes=[512, 512, 512], **kwargs):
|
| 51 |
+
super().__init__(**kwargs)
|
| 52 |
+
|
| 53 |
+
if len(obs_shape) > 1:
|
| 54 |
+
self.flatten = layers.Flatten(input_shape=obs_shape)
|
| 55 |
+
self.flatten(tf.zeros((1,) + obs_shape))
|
| 56 |
+
else:
|
| 57 |
+
self.flatten = None
|
| 58 |
+
|
| 59 |
+
self.dense_layers = []
|
| 60 |
+
for size in hidden_layer_sizes:
|
| 61 |
+
self.dense_layers.append(layers.Dense(size, activation='relu'))
|
| 62 |
+
self.value = layers.Dense(1)
|
| 63 |
+
|
| 64 |
+
self._obs_shape = obs_shape
|
| 65 |
+
self._hidden_layer_sizes = hidden_layer_sizes
|
| 66 |
+
|
| 67 |
+
def call(self, inputs):
|
| 68 |
+
x = self.flatten(inputs) if self.flatten else inputs
|
| 69 |
+
for layer in self.dense_layers:
|
| 70 |
+
x = layer(x)
|
| 71 |
+
return self.value(x)
|
| 72 |
+
|
| 73 |
+
def get_config(self):
|
| 74 |
+
config = super().get_config()
|
| 75 |
+
config.update({
|
| 76 |
+
'obs_shape': self._obs_shape,
|
| 77 |
+
'hidden_layer_sizes': self._hidden_layer_sizes
|
| 78 |
+
})
|
| 79 |
+
return config
|
| 80 |
+
|
| 81 |
+
class PPOAgent:
|
| 82 |
+
def __init__(self, observation_space_shape, action_space_size,
|
| 83 |
+
actor_lr=3e-4, critic_lr=3e-4, gamma=0.99,
|
| 84 |
+
gae_lambda=0.95, clip_epsilon=0.2,
|
| 85 |
+
num_epochs_per_update=10, batch_size=64,
|
| 86 |
+
hidden_layer_sizes=[512, 512, 512]):
|
| 87 |
+
|
| 88 |
+
self.gamma = gamma
|
| 89 |
+
self.gae_lambda = gae_lambda
|
| 90 |
+
self.clip_epsilon = clip_epsilon
|
| 91 |
+
self.num_epochs_per_update = num_epochs_per_update
|
| 92 |
+
self.batch_size = batch_size
|
| 93 |
+
|
| 94 |
+
self.observation_space_shape = observation_space_shape
|
| 95 |
+
self.action_space_size = action_space_size
|
| 96 |
+
|
| 97 |
+
self.actor = Actor(observation_space_shape, action_space_size, hidden_layer_sizes=hidden_layer_sizes)
|
| 98 |
+
self.critic = Critic(observation_space_shape, hidden_layer_sizes=hidden_layer_sizes)
|
| 99 |
+
|
| 100 |
+
self.actor_optimizer = tf.keras.optimizers.Adam(learning_rate=actor_lr)
|
| 101 |
+
self.critic_optimizer = tf.keras.optimizers.Adam(learning_rate=critic_lr)
|
| 102 |
+
|
| 103 |
+
self.states = []
|
| 104 |
+
self.actions = []
|
| 105 |
+
self.rewards = []
|
| 106 |
+
self.next_states = []
|
| 107 |
+
self.dones = []
|
| 108 |
+
self.log_probs = []
|
| 109 |
+
self.values = []
|
| 110 |
+
|
| 111 |
+
dummy_obs = tf.zeros((1,) + observation_space_shape, dtype=tf.float32)
|
| 112 |
+
self.actor(dummy_obs)
|
| 113 |
+
self.critic(dummy_obs)
|
| 114 |
+
|
| 115 |
+
def remember(self, state, action, reward, next_state, done, log_prob, value):
|
| 116 |
+
self.states.append(state)
|
| 117 |
+
self.actions.append(action)
|
| 118 |
+
self.rewards.append(reward)
|
| 119 |
+
self.next_states.append(next_state)
|
| 120 |
+
self.dones.append(done)
|
| 121 |
+
self.log_probs.append(log_prob)
|
| 122 |
+
self.values.append(value)
|
| 123 |
+
|
| 124 |
+
@tf.function
|
| 125 |
+
|
| 126 |
+
def _choose_action_tf(self, observation, action_mask):
|
| 127 |
+
observation = tf.expand_dims(tf.convert_to_tensor(observation, dtype=tf.float32), 0)
|
| 128 |
+
|
| 129 |
+
pi_logits = self.actor(observation)
|
| 130 |
+
|
| 131 |
+
masked_logits = tf.where(action_mask, pi_logits, -1e9)
|
| 132 |
+
|
| 133 |
+
value = self.critic(observation)
|
| 134 |
+
|
| 135 |
+
distribution = tfd.Categorical(logits=masked_logits)
|
| 136 |
+
|
| 137 |
+
action = distribution.sample()
|
| 138 |
+
log_prob = distribution.log_prob(action)
|
| 139 |
+
|
| 140 |
+
return action, log_prob, value
|
| 141 |
+
|
| 142 |
+
def choose_action(self, observation, action_mask):
|
| 143 |
+
action_tensor, log_prob_tensor, value_tensor = self._choose_action_tf(observation, action_mask)
|
| 144 |
+
|
| 145 |
+
return action_tensor.numpy(), log_prob_tensor.numpy(), value_tensor.numpy()[0,0]
|
| 146 |
+
|
| 147 |
+
def calculate_advantages_and_returns(self):
|
| 148 |
+
rewards = np.array(self.rewards, dtype=np.float32)
|
| 149 |
+
values = np.array(self.values, dtype=np.float32)
|
| 150 |
+
dones = np.array(self.dones, dtype=np.float32)
|
| 151 |
+
|
| 152 |
+
last_next_state_value = self.critic(tf.expand_dims(tf.convert_to_tensor(self.next_states[-1], dtype=tf.float32), 0)).numpy()[0,0] if not dones[-1] else 0
|
| 153 |
+
next_values = np.append(values[1:], last_next_state_value)
|
| 154 |
+
|
| 155 |
+
advantages = []
|
| 156 |
+
returns = []
|
| 157 |
+
|
| 158 |
+
last_advantage = 0
|
| 159 |
+
for t in reversed(range(len(rewards))):
|
| 160 |
+
delta = rewards[t] + self.gamma * next_values[t] * (1 - dones[t]) - values[t]
|
| 161 |
+
|
| 162 |
+
advantage = delta + self.gae_lambda * self.gamma * (1 - dones[t]) * last_advantage
|
| 163 |
+
advantages.insert(0, advantage)
|
| 164 |
+
|
| 165 |
+
returns.insert(0, advantage + values[t])
|
| 166 |
+
last_advantage = advantage
|
| 167 |
+
|
| 168 |
+
return np.array(advantages, dtype=np.float32), np.array(returns, dtype=np.float32)
|
| 169 |
+
|
| 170 |
+
def learn(self):
|
| 171 |
+
if not self.states:
|
| 172 |
+
return
|
| 173 |
+
|
| 174 |
+
states = tf.convert_to_tensor(np.array(self.states), dtype=tf.float32)
|
| 175 |
+
actions = tf.convert_to_tensor(np.array(self.actions), dtype=tf.int32)
|
| 176 |
+
old_log_probs = tf.convert_to_tensor(np.array(self.log_probs), dtype=tf.float32)
|
| 177 |
+
|
| 178 |
+
advantages, returns = self.calculate_advantages_and_returns()
|
| 179 |
+
advantages = (advantages - tf.reduce_mean(advantages)) / (tf.math.reduce_std(advantages) + 1e-8)
|
| 180 |
+
|
| 181 |
+
dataset = tf.data.Dataset.from_tensor_slices((states, actions, old_log_probs, advantages, returns))
|
| 182 |
+
dataset = dataset.shuffle(buffer_size=len(self.states)).batch(self.batch_size)
|
| 183 |
+
|
| 184 |
+
for _ in range(self.num_epochs_per_update):
|
| 185 |
+
for batch_states, batch_actions, batch_old_log_probs, batch_advantages, batch_returns in dataset:
|
| 186 |
+
|
| 187 |
+
with tf.GradientTape() as tape:
|
| 188 |
+
current_logits = self.actor(batch_states)
|
| 189 |
+
|
| 190 |
+
new_distribution = tfd.Categorical(logits=current_logits)
|
| 191 |
+
|
| 192 |
+
new_log_probs = new_distribution.log_prob(batch_actions)
|
| 193 |
+
ratio = tf.exp(new_log_probs - batch_old_log_probs)
|
| 194 |
+
|
| 195 |
+
surrogate1 = ratio * batch_advantages
|
| 196 |
+
surrogate2 = tf.clip_by_value(ratio, 1 - self.clip_epsilon, 1 + self.clip_epsilon) * batch_advantages
|
| 197 |
+
|
| 198 |
+
actor_loss = -tf.reduce_mean(tf.minimum(surrogate1, surrogate2))
|
| 199 |
+
|
| 200 |
+
actor_grads = tape.gradient(actor_loss, self.actor.trainable_variables)
|
| 201 |
+
self.actor_optimizer.apply_gradients(zip(actor_grads, self.actor.trainable_variables))
|
| 202 |
+
|
| 203 |
+
with tf.GradientTape() as tape:
|
| 204 |
+
new_values = self.critic(batch_states)
|
| 205 |
+
critic_loss = tf.reduce_mean(tf.square(new_values - batch_returns))
|
| 206 |
+
|
| 207 |
+
critic_grads = tape.gradient(critic_loss, self.critic.trainable_variables)
|
| 208 |
+
self.critic_optimizer.apply_gradients(zip(critic_grads, self.critic.trainable_variables))
|
| 209 |
+
|
| 210 |
+
self.states = []
|
| 211 |
+
self.actions = []
|
| 212 |
+
self.rewards = []
|
| 213 |
+
self.next_states = []
|
| 214 |
+
self.dones = []
|
| 215 |
+
self.log_probs = []
|
| 216 |
+
self.values = []
|
| 217 |
+
|
| 218 |
+
def save_models(self, path):
|
| 219 |
+
actor_save_path = f"{path}_actor.keras"
|
| 220 |
+
critic_save_path = f"{path}_critic.keras"
|
| 221 |
+
print(f"\n--- Attempting to save models ---")
|
| 222 |
+
print(f"Target Actor path: {os.path.abspath(actor_save_path)}")
|
| 223 |
+
print(f"Target Critic path: {os.path.abspath(critic_save_path)}")
|
| 224 |
+
try:
|
| 225 |
+
self.actor.save(actor_save_path)
|
| 226 |
+
print(f"Actor model saved successfully to {os.path.abspath(actor_save_path)}")
|
| 227 |
+
except Exception as e:
|
| 228 |
+
print(f"ERROR: Failed to save Actor model to {os.path.abspath(actor_save_path)}")
|
| 229 |
+
print(f"Reason: {e}")
|
| 230 |
+
�� traceback.print_exc()
|
| 231 |
+
try:
|
| 232 |
+
self.critic.save(critic_save_path)
|
| 233 |
+
print(f"Critic model saved successfully to {os.path.abspath(critic_save_path)}")
|
| 234 |
+
except Exception as e:
|
| 235 |
+
print(f"ERROR: Failed to save Critic model to {os.path.abspath(critic_save_path)}")
|
| 236 |
+
print(f"Reason: {e}")
|
| 237 |
+
traceback.print_exc()
|
| 238 |
+
print(f"--- Models save process completed ---\n")
|
| 239 |
+
|
| 240 |
+
def load_models(self, path):
|
| 241 |
+
|
| 242 |
+
actor_load_path = f"{path}_actor.keras"
|
| 243 |
+
critic_load_path = f"{path}_critic.keras"
|
| 244 |
+
actor_loaded_ok = False
|
| 245 |
+
critic_loaded_ok = False
|
| 246 |
+
|
| 247 |
+
custom_objects = {
|
| 248 |
+
'Actor': Actor,
|
| 249 |
+
'Critic': Critic
|
| 250 |
+
}
|
| 251 |
+
|
| 252 |
+
try:
|
| 253 |
+
|
| 254 |
+
self.actor = tf.keras.models.load_model(actor_load_path, custom_objects=custom_objects)
|
| 255 |
+
actor_loaded_ok = True
|
| 256 |
+
print(f"Actor model loaded from: {os.path.abspath(actor_load_path)}")
|
| 257 |
+
except Exception as e:
|
| 258 |
+
print(f"ERROR: Failed to load Actor model from {os.path.abspath(actor_load_path)}")
|
| 259 |
+
print(f"Reason: {e}")
|
| 260 |
+
traceback.print_exc()
|
| 261 |
+
|
| 262 |
+
try:
|
| 263 |
+
self.critic = tf.keras.models.load_model(critic_load_path, custom_objects=custom_objects)
|
| 264 |
+
critic_loaded_ok = True
|
| 265 |
+
print(f"Critic model loaded from: {os.path.abspath(critic_load_path)}")
|
| 266 |
+
except Exception as e:
|
| 267 |
+
print(f"ERROR: Failed to load Critic model from {os.path.abspath(critic_load_path)}")
|
| 268 |
+
print(f"Reason: {e}")
|
| 269 |
+
traceback.print_exc()
|
| 270 |
+
|
| 271 |
+
if actor_loaded_ok and critic_loaded_ok:
|
| 272 |
+
print(f"All PPO models loaded successfully from '{path}'.")
|
| 273 |
+
return True
|
| 274 |
+
else:
|
| 275 |
+
print(f"Warning: One or both models failed to load. The agent will use untrained models.")
|
| 276 |
+
return False
|