YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Threshold Pruner
Multi-method pruning framework for threshold logic circuits.
Methods
| Method | Flag | Description |
|---|---|---|
| Magnitude Reduction | mag |
Reduce weights by 1 toward zero |
| Batched Magnitude | batched |
GPU-parallel magnitude reduction |
| Zero Pruning | zero |
Set weights directly to 0 |
| Quantization | quant |
Force weights to {-1, 0, 1} |
| Evolutionary | evo |
Mutation + selection with parsimony |
| Simulated Annealing | anneal |
Gradual cooling search |
| Pareto Search | pareto |
Correctness vs size tradeoff |
Usage
# List available circuits
python prune.py --list
# Prune a circuit with all methods
python prune.py threshold-hamming74decoder
# Specific methods only
python prune.py threshold-hamming74decoder --methods mag,zero,evo
# Batch process
python prune.py --all --max-inputs 8
# Save best result
python prune.py threshold-hamming74decoder --save
Requirements
torch
safetensors
Circuit Format
Each circuit needs:
threshold-{name}/
βββ model.safetensors # Weights: {layer.weight: [...], layer.bias: [...]}
βββ model.py # Forward function
βββ config.json # {inputs, outputs, neurons, layers, parameters}
Related
License
MIT
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support