YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

Threshold Pruner

Multi-method pruning framework for threshold logic circuits.

Methods

Method Flag Description
Magnitude Reduction mag Reduce weights by 1 toward zero
Batched Magnitude batched GPU-parallel magnitude reduction
Zero Pruning zero Set weights directly to 0
Quantization quant Force weights to {-1, 0, 1}
Evolutionary evo Mutation + selection with parsimony
Simulated Annealing anneal Gradual cooling search
Pareto Search pareto Correctness vs size tradeoff

Usage

# List available circuits
python prune.py --list

# Prune a circuit with all methods
python prune.py threshold-hamming74decoder

# Specific methods only
python prune.py threshold-hamming74decoder --methods mag,zero,evo

# Batch process
python prune.py --all --max-inputs 8

# Save best result
python prune.py threshold-hamming74decoder --save

Requirements

torch
safetensors

Circuit Format

Each circuit needs:

threshold-{name}/
β”œβ”€β”€ model.safetensors   # Weights: {layer.weight: [...], layer.bias: [...]}
β”œβ”€β”€ model.py            # Forward function
β”œβ”€β”€ config.json         # {inputs, outputs, neurons, layers, parameters}

Related

License

MIT

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support