🦙 LLaMA 3.2 1B - QLoRA Fine-Tuned Model
This repository contains a QLoRA fine-tuned adapter for meta-llama/Llama-3.2-1B, trained on the Alpaca dataset for instruction following and conversational response improvement.
The model runs efficiently using 4-bit quantization (bitsandbytes) and is ideal for low-VRAM GPUs (6–8GB+).
🚀 Quick Start
1️⃣ Install Dependencies
pip install -U transformers datasets peft bitsandbytes accelerate
2️⃣ Load 4-bit Base Model
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_name = "meta-llama/Llama-3.2-1B"
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
dtype=torch.bfloat16,
device_map="auto"
)
print("🔥 Base Model Loaded in 4-bit Mode")
3️⃣ Attach LoRA Adapter (This Model)
from peft import PeftModel
lora_model = PeftModel.from_pretrained(model, "omkarwazulkar/LLama3.2-1B-QLoRA")
lora_model.eval()
print("🟥 LoRA Adapter Attached Successfully")
4️⃣ Text Generation Function
def generate(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
output = lora_model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
pad_token_id=tokenizer.eos_token_id
)
return tokenizer.decode(output[0], skip_special_tokens=True)
print(generate("Explain quantum computing simply."))
5️⃣ Test on Alpaca Dataset Samples
from datasets import load_dataset
dataset = load_dataset("tatsu-lab/alpaca", split="train")
for i in range(n):
ex = dataset[i]
prompt = f"Instruction: {ex['instruction']}\n\nAnswer:" if ex['input']=="" else \
f"Instruction: {ex['instruction']}\nInput: {ex['input']}\n\nAnswer:"
print(f"===== SAMPLE {i} =====")
print(generate(prompt))
print("=======================")
Model tree for omkarwazulkar/LLama3.2-1B-QLoRA
Base model
meta-llama/Llama-3.2-1B