See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: llamafactory/tiny-random-Llama-3
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 5d93b51dfa8d54b5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/5d93b51dfa8d54b5_train_data.json
type:
field_input: context
field_instruction: query
field_output: output
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/4f8eb6b0-1533-424e-8794-7043e335eeec
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/5d93b51dfa8d54b5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.1
wandb_entity: eddysang
wandb_mode: online
wandb_name: 226a9016-ce3e-4986-b2c2-647820c7339a
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 226a9016-ce3e-4986-b2c2-647820c7339a
warmup_steps: 50
weight_decay: 0.02
xformers_attention: false
4f8eb6b0-1533-424e-8794-7043e335eeec
This model is a fine-tuned version of llamafactory/tiny-random-Llama-3 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 11.7469
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- training_steps: 50
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| No log | 0.0020 | 1 | 11.7637 |
| 11.7637 | 0.0101 | 5 | 11.7636 |
| 11.7642 | 0.0202 | 10 | 11.7634 |
| 11.7617 | 0.0303 | 15 | 11.7630 |
| 11.7625 | 0.0404 | 20 | 11.7624 |
| 11.7625 | 0.0505 | 25 | 11.7616 |
| 11.761 | 0.0606 | 30 | 11.7605 |
| 11.7599 | 0.0707 | 35 | 11.7588 |
| 11.7583 | 0.0808 | 40 | 11.7562 |
| 11.7544 | 0.0910 | 45 | 11.7522 |
| 11.7519 | 0.1011 | 50 | 11.7469 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for mamung/4f8eb6b0-1533-424e-8794-7043e335eeec
Base model
llamafactory/tiny-random-Llama-3