pythia-helpful-1epoch
Collection
Pythia-2.8b supervised finetuned and DPO finetuned with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.
•
12 items
•
Updated
Pythia-70m finetuned using original DPO code with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.
Checkpoints are also uploaded.
Fully reproducible finetuning code is available on GitHub
See Pythia-70m for model details (paper).
See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.
You can cite these models if they are helpful as follows:
@inproceedings{o2024attributing,
title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
year={2024}
}
hf (pretrained=lomahony/pythia-70m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16
| Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
|---|---|---|---|---|---|---|---|
| arc_challenge | 1 | none | 0 | acc | 0.1724 | ± | 0.0110 |
| none | 0 | acc_norm | 0.2201 | ± | 0.0121 | ||
| arc_easy | 1 | none | 0 | acc | 0.3350 | ± | 0.0097 |
| none | 0 | acc_norm | 0.3380 | ± | 0.0097 | ||
| boolq | 2 | none | 0 | acc | 0.4315 | ± | 0.0087 |
| hellaswag | 1 | none | 0 | acc | 0.2614 | ± | 0.0044 |
| none | 0 | acc_norm | 0.2665 | ± | 0.0044 | ||
| lambada_openai | 1 | none | 0 | perplexity | 5951.7544 | ± | 428.5435 |
| none | 0 | acc | 0.0309 | ± | 0.0024 | ||
| openbookqa | 1 | none | 0 | acc | 0.1460 | ± | 0.0158 |
| none | 0 | acc_norm | 0.2440 | ± | 0.0192 | ||
| piqa | 1 | none | 0 | acc | 0.5550 | ± | 0.0116 |
| none | 0 | acc_norm | 0.5501 | ± | 0.0116 | ||
| sciq | 1 | none | 0 | acc | 0.4010 | ± | 0.0155 |
| none | 0 | acc_norm | 0.5070 | ± | 0.0158 | ||
| wikitext | 2 | none | 0 | word_perplexity | 547.6920 | ± | N/A |
| none | 0 | byte_perplexity | 3.2518 | ± | N/A | ||
| none | 0 | bits_per_byte | 1.7012 | ± | N/A | ||
| winogrande | 1 | none | 0 | acc | 0.4822 | ± | 0.0140 |
hf (pretrained=lomahony/pythia-70m-helpful-dpo), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16
| Tasks | Version | Filter | n-shot | Metric | Value | Stderr | |
|---|---|---|---|---|---|---|---|
| arc_challenge | 1 | none | 5 | acc | 0.1886 | ± | 0.0114 |
| none | 5 | acc_norm | 0.2338 | ± | 0.0124 | ||
| arc_easy | 1 | none | 5 | acc | 0.3346 | ± | 0.0097 |
| none | 5 | acc_norm | 0.3308 | ± | 0.0097 | ||
| boolq | 2 | none | 5 | acc | 0.4028 | ± | 0.0086 |
| hellaswag | 1 | none | 5 | acc | 0.2617 | ± | 0.0044 |
| none | 5 | acc_norm | 0.2648 | ± | 0.0044 | ||
| lambada_openai | 1 | none | 5 | perplexity | 22676.7987 | ± | 1626.4435 |
| none | 5 | acc | 0.0173 | ± | 0.0018 | ||
| openbookqa | 1 | none | 5 | acc | 0.1640 | ± | 0.0166 |
| none | 5 | acc_norm | 0.2460 | ± | 0.0193 | ||
| piqa | 1 | none | 5 | acc | 0.5528 | ± | 0.0116 |
| none | 5 | acc_norm | 0.5462 | ± | 0.0116 | ||
| sciq | 1 | none | 5 | acc | 0.3100 | ± | 0.0146 |
| none | 5 | acc_norm | 0.4220 | ± | 0.0156 | ||
| wikitext | 2 | none | 5 | word_perplexity | 547.6920 | ± | N/A |
| none | 5 | byte_perplexity | 3.2518 | ± | N/A | ||
| none | 5 | bits_per_byte | 1.7012 | ± | N/A | ||
| winogrande | 1 | none | 5 | acc | 0.5201 | ± | 0.0140 |