memo / model_card.md
likhonsheikh's picture
Upload Memo: Production-grade Transformers + Safetensors implementation
a8fc815 verified

Memo: Production-Grade Transformers + Safetensors Implementation

Memo Logo Transformers Safetensors License

Overview

Memo is a complete transformation from toy logic to production-grade machine learning infrastructure. This implementation uses Transformers + Safetensors as the foundation for enterprise-level video generation with proper security, performance optimization, and scalability.

🎯 What This Guarantees

βœ… Transformers-based - Real ML understanding, not toy logic
βœ… Safetensors-only - Zero security vulnerabilities
βœ… Production-ready - Enterprise architecture with proper error handling
βœ… Memory optimized - xFormers, attention slicing, CPU offload
βœ… Tier-based scaling - Free/Pro/Enterprise configurations
βœ… Security compliant - Audit trails and validation

πŸ—οΈ Architecture

Core Components

  1. Bangla Text Parser (models/text/bangla_parser.py)

    • Transformer-based scene extraction using google/mt5-small
    • Proper tokenization with memory optimization
    • Deterministic output with controlled parameters
  2. Scene Planner (core/scene_planner.py)

    • ML-based scene planning (no more toy logic)
    • Intelligent timing and pacing calculations
    • Visual style determination
  3. Stable Diffusion Generator (models/image/sd_generator.py)

    • Safetensors-only model loading (use_safetensors=True)
    • Memory optimizations (xFormers, attention slicing, CPU offload)
    • LoRA support with safetensors validation
    • LCM acceleration for faster inference
  4. Model Tier System (config/model_tiers.py)

    • Free Tier: Basic 512x512, 15 steps, no LoRA
    • Pro Tier: 768x768, 25 steps, scene LoRA, LCM
    • Enterprise Tier: 1024x1024, 30 steps, custom LoRA
  5. Training Pipeline (scripts/train_scene_lora.py)

    • MANDATORY save_safetensors=True
    • Transformers integration with PEFT
    • Security-first training with proper validation
  6. Production API (api/main.py)

    • FastAPI endpoint with tier-based routing
    • Background processing for long-running tasks
    • Security validation endpoints

πŸ”’ Security Implementation

Model Weight Security

  • ONLY .safetensors files allowed - No .bin, .ckpt, or pickle files
  • Model signature verification
  • File format enforcement
  • Memory-safe loading practices

LoRA Configuration (data/lora/README.md)

  • ONLY .safetensors files - No .bin, .ckpt, or other formats allowed
  • Model signatures required
  • Version tracking and audit trails

πŸš€ Usage Examples

Basic Scene Planning

from core.scene_planner import plan_scenes

scenes = plan_scenes(
    text_bn="ΰ¦†ΰ¦œΰ¦•ΰ§‡ΰ¦° দিনটি খুব সুন্দর ছিলΰ₯€",
    duration=15
)

Tier-Based Generation

from config.model_tiers import get_tier_config
from models.image.sd_generator import get_generator

config = get_tier_config("pro")
generator = get_generator(lora_path=config.lora_path, use_lcm=config.lcm_enabled)

Security Validation

from config.model_tiers import validate_model_weights_security

result = validate_model_weights_security("data/lora/memo-scene-lora.safetensors")

πŸ“Š Model Tiers

Tier Resolution Inference Steps LoRA LCM Credits/min Memory
Free 512Γ—512 15 ❌ ❌ $5.0 4GB
Pro 768Γ—768 25 βœ… βœ… $15.0 8GB
Enterprise 1024Γ—1024 30 βœ… βœ… $50.0 16GB

πŸ› οΈ Installation

# Clone the repository
git clone https://huggingface.co/likhonsheikh/memo

# Install dependencies
pip install -r requirements.txt

# Run the demonstration
python demo.py

# Start the API server
python api/main.py

🎬 API Usage

Health Check

curl http://localhost:8000/health

Generate Video

curl -X POST "http://localhost:8000/generate" \
  -H "Content-Type: application/json" \
  -d '{
    "text": "ΰ¦†ΰ¦œΰ¦•ΰ§‡ΰ¦° দিনটি খুব সুন্দর ছিলΰ₯€",
    "duration": 15,
    "tier": "pro"
  }'

Check Status

curl http://localhost:8000/status/{request_id}

πŸ§ͺ Training Custom LoRA

from scripts.train_scene_lora import SceneLoRATrainer, TrainingConfig

config = TrainingConfig(
    base_model="google/mt5-small",
    rank=32,
    alpha=64,
    save_safetensors=True  # MANDATORY
)

trainer = SceneLoRATrainer(config)
trainer.load_model()
trainer.setup_lora()
trainer.train(training_data)

⚑ Performance Features

  • Memory Optimization: xFormers, attention slicing, CPU offload
  • FP16 Precision: 50% memory reduction with maintained quality
  • LCM Acceleration: Faster inference when available
  • Device Mapping: Optimal GPU/CPU utilization
  • Background Processing: Async handling of long-running tasks

πŸ” Security Validation

from config.model_tiers import validate_model_weights_security

# Validate any model file
result = validate_model_weights_security("path/to/model.safetensors")
print(f"Secure: {result['is_secure']}")
print(f"Format: {result['format']}")
print(f"Issues: {result['issues']}")

πŸ“ File Structure

πŸ“ Memo/
β”œβ”€β”€ πŸ“„ requirements.txt                    # Production dependencies
β”œβ”€β”€ πŸ“ models/
β”‚   └── πŸ“ text/
β”‚       └── πŸ“„ bangla_parser.py           # Transformer-based Bangla parser
β”œβ”€β”€ πŸ“ core/
β”‚   └── πŸ“„ scene_planner.py               # ML-based scene planning
β”œβ”€β”€ πŸ“ models/
β”‚   └── πŸ“ image/
β”‚       └── πŸ“„ sd_generator.py            # Stable Diffusion + Safetensors
β”œβ”€β”€ πŸ“ data/
β”‚   └── πŸ“ lora/
β”‚       └── πŸ“„ README.md                  # LoRA configuration (safetensors only)
β”œβ”€β”€ πŸ“ scripts/
β”‚   └── πŸ“„ train_scene_lora.py            # Training with safetensors output
β”œβ”€β”€ πŸ“ config/
β”‚   └── πŸ“„ model_tiers.py                 # Tier management system
β”œβ”€β”€ πŸ“ api/
β”‚   └── πŸ“„ main.py                        # Production API endpoint
└── πŸ“ demo.py                            # Complete system demonstration

🎯 What This Doesn't Do

❌ Make GPUs cheap
❌ Fix bad prompts
❌ Read your mind
❌ Guarantee perfect results

πŸ† Production Readiness

This implementation is now:

  • βœ… Correct - Uses proper ML frameworks (transformers, safetensors)
  • βœ… Modern - 2025-grade architecture with security best practices
  • βœ… Secure - Zero tolerance for unsafe model formats
  • βœ… Scalable - Tier-based resource management
  • βœ… Defensible - Production-grade security and validation

πŸ“œ License

This project is licensed under the Apache License 2.0 - see the LICENSE file for details.

🀝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

πŸ“ž Support

For support, email support@memo.ai or join our Discord community.


If your API claims "state-of-the-art" without these features, you're lying. Memo now actually delivers on that promise with proper Transformers + Safetensors integration.