Improve model card: Add pipeline tag, usage, results, and detailed description

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +83 -4
README.md CHANGED
@@ -1,11 +1,90 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
3
  ---
4
 
5
- # UAGLNet
6
 
7
- **Repository:** [Dstate/UAGLNet](https://github.com/Dstate/UAGLNet)
8
 
9
- **Authors:** [Dstate](https://github.com/Dstate) | **License:** Apache 2.0
10
 
11
- **Paper:** *“UAGLNet: Uncertainty-Aggregated Global-Local Fusion Network with Cooperative CNN-Transformer for Building Extraction”* ([arXiv:2512.12941](https://arxiv.org/abs/2512.12941))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ pipeline_tag: image-segmentation
4
+ tags:
5
+ - building-extraction
6
+ - remote-sensing
7
  ---
8
 
9
+ # UAGLNet: Uncertainty-Aggregated Global-Local Fusion Network with Cooperative CNN-Transformer for Building Extraction
10
 
11
+ This repository contains the official implementation of **UAGLNet**, a model for building extraction from remote sensing images, as presented in the paper *"UAGLNet: Uncertainty-Aggregated Global-Local Fusion Network with Cooperative CNN-Transformer for Building Extraction"*.
12
 
13
+ UAGLNet addresses the challenges of building extraction from remote sensing images due to complex structure variations. It proposes an Uncertainty-Aggregated Global-Local Fusion Network capable of exploiting high-quality global-local visual semantics under the guidance of uncertainty modeling. Specifically, it features a novel cooperative encoder with hybrid CNN and transformer layers, an intermediate cooperative interaction block (CIB) to narrow feature gaps, and a Global-Local Fusion (GLF) module. Additionally, an Uncertainty-Aggregated Decoder (UAD) is introduced to explicitly estimate pixel-wise uncertainty and mitigate segmentation ambiguity in uncertain regions.
14
 
15
+ ## Paper
16
+ * **ArXiv:** [2512.12941](https://arxiv.org/abs/2512.12941)
17
+ * **Hugging Face Papers:** [2512.12941](https://huggingface.co/papers/2512.12941)
18
+
19
+ ## Code
20
+ * **GitHub Repository:** [Dstate/UAGLNet](https://github.com/Dstate/UAGLNet)
21
+ * **Hugging Face Collection:** [ldxxx/uaglnet](https://huggingface.co/collections/ldxxx/uaglnet)
22
+
23
+ <img width="1000" src="https://github.com/Dstate/UAGLNet/raw/main/assets/architecture2.png">
24
+
25
+ ## Quick Start
26
+
27
+ ### Installation
28
+
29
+ Clone this repository and create the environment.
30
+ ```bash
31
+ git clone https://github.com/Dstate/UAGLNet.git
32
+ cd UAGLNet
33
+
34
+ conda create -n uaglnet python=3.8 -y
35
+ conda activate uaglnet
36
+ conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
37
+ pip install -r requirements.txt
38
+ ```
39
+
40
+ ### Data Preprocessing
41
+
42
+ We conduct experiments on the Inria, WHU, and Massachusetts datasets. Detailed guidance for dataset preprocessing is provided here: [DATA_PREPARATION.md](https://github.com/Dstate/UAGLNet/blob/main/assets/DATA_PREPARATION.md).
43
+
44
+ ### Training & Testing
45
+
46
+ Training and testing examples on the Inria dataset:
47
+ ```bash
48
+ # training
49
+ python UAGLNet_train.py -c config/inria/UAGLNet.py
50
+
51
+ # testing
52
+ python UAGLNet_test.py -c config/inria/UAGLNet.py
53
+ ```
54
+
55
+ ### Main Results
56
+
57
+ The following table presents the performance of UAGLNet on building extraction benchmarks.
58
+
59
+ | **Benchmark** | **IoU** | **F1** | **P** | **R** | **Weight** |
60
+ | :-------: | :--------: | :--------: | :-----------: | :------: | :------: |
61
+ | Inria | 83.74 | 91.15 | 92.09 | 90.22 | [UAGLNet_Inria](https://huggingface.co/ldxxx/UAGLNet_Inria) |
62
+ | Mass | 76.97 | 86.99 | 88.28 | 85.73 | [UAGLNet_Mass](https://huggingface.co/ldxxx/UAGLNet_Massachusetts) |
63
+ | WHU | 92.07 | 95.87 | 96.21 | 95.54 | [UAGLNet_WHU](https://huggingface.co/ldxxx/UAGLNet_WHU) |
64
+
65
+ You can quickly reproduce these results by running `Reproduce.py`, which will load the pretrained checkpoints from Hugging Face and perform inference.
66
+
67
+ ```bash
68
+ # Inria
69
+ python Reproduce.py -d Inria
70
+
71
+ # Massachusetts
72
+ python Reproduce.py -d Mass
73
+
74
+ # WHU
75
+ python Reproduce.py -d WHU
76
+ ```
77
+
78
+ ## Citation
79
+ If you find this project useful in your research, please cite it as:
80
+ ```bibtex
81
+ @article{UAGLNet,
82
+ title = {UAGLNet: Uncertainty-Aggregated Global-Local Fusion Network with Cooperative CNN-Transformer for Building Extraction},
83
+ author = {Siyuan Yao and Dongxiu Liu and Taotao Li and Shengjie Li and Wenqi Ren and Xiaochun Cao},
84
+ journal = {arXiv preprint arXiv:2512.12941},
85
+ year = {2025}
86
+ }
87
+ ```
88
+
89
+ ## Acknowledgement
90
+ This work is built upon [BuildingExtraction](https://github.com/stdcoutzrh/BuildingExtraction), [GeoSeg](https://github.com/WangLibo1995/GeoSeg/tree/main) and [SMT](https://github.com/AFeng-x/SMT). We sincerely appreciate their contributions which provide a clear pipeline and well-organized code.