Granite-4.0-h-tiny
Model Overview
- Model Architecture: GraniteMoeHybridForCausalLM
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Release Date:
- Version: 1.0
- Model Developers:: Red Hat
Quantized version of ibm-granite/granite-4.0-h-tiny.
Model Optimizations
This model was obtained by quantizing the weights and activations of ibm-granite/granite-4.0-h-tiny to FP8 data type. This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks of the language model are quantized.
Deployment
Use with vLLM
- Install vLLM from main:
uv pip install -U git+https://github.com/vllm-project/vllm.git \
--extra-index-url https://wheels.vllm.ai/nightly \
--no-deps \
--no-cache
uv pip install compressed-tensors==0.12.3a20251114 --no-cache
uv pip install --upgrade torchvision --break-system-packages --no-cache
uv pip install cloudpickle msgspec zmq blake3 cachetools prometheus_client fastapi openai openai_harmony pybase64 llguidance diskcache xgrammar lm-format-enforcer partial-json-parser cbor2 einops gguf numba --no-cache
- Initialize vLLM server:
vllm serve RedHatAI/granite-4.0-h-tiny-FP8-dynamic --tensor_parallel_size 1
- Send requests to the server:
from openai import OpenAI
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model = "RedHatAI/granite-4.0-h-tiny-FP8-dynamic"
messages = [
{"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
]
outputs = client.chat.completions.create(
model=model,
messages=messages,
)
generated_text = outputs.choices[0].message.content
print(generated_text)
Creation
This model was quantized using the llm-compressor library as shown below.
Creation details
Install specific llm-compression version:
uv pip install git+https://github.com/vllm-project/llm-compressor.git@refs/pull/2001/head --no-cache
uv pip install --upgrade torchvision --break-system-packages --no-cache
from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor import oneshot
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.utils import dispatch_for_generation
from llmcompressor.modeling import replace_modules_for_calibration
from llmcompressor.modeling.granite4 import pack_3d_experts
MODEL_ID = "ibm-granite/granite-4.0-h-tiny"
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype="auto")
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = replace_modules_for_calibration(model)
ignore_lay = ["lm_head", "re:.*block_sparse_moe.router"]
recipe = QuantizationModifier(
targets=["Linear"],
scheme="FP8_DYNAMIC",
ignore=ignore_lay,
)
oneshot(model=model, recipe=recipe)
print("========== SAMPLE GENERATION ==============")
dispatch_for_generation(model)
input_ids = tokenizer(
"Describe Large Language Model", return_tensors="pt"
).input_ids.to(model.device)
output = model.generate(input_ids, max_new_tokens=35)
print(tokenizer.decode(output[0]))
print("==========================================")
SAVE_DIR = MODEL_ID.rstrip("/").split("/")[-1] + "-FP8-dynamic"
print(f"Saving to {SAVE_DIR}")
model.save_pretrained(SAVE_DIR)
tokenizer.save_pretrained(SAVE_DIR)
pack_3d_experts(SAVE_DIR)
Evaluation
The model was evaluated on the OpenLLM leaderboard task, using lm-evaluation-harness. vLLM was used for all evaluations.
Evaluation details
Install vLLM from main:
uv pip install -U git+https://github.com/vllm-project/vllm.git \
--extra-index-url https://wheels.vllm.ai/nightly \
--no-deps \
--no-cache
uv pip install compressed-tensors==0.12.3a20251114 --no-cache
uv pip install --upgrade torchvision --break-system-packages --no-cache
uv pip install cloudpickle msgspec zmq blake3 cachetools prometheus_client fastapi openai openai_harmony pybase64 llguidance diskcache xgrammar lm-format-enforcer partial-json-parser cbor2 einops gguf numba --no-cache
Openllm V1
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/granite-4.0-h-tiny-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=16384,tensor_parallel_size=1,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
--tasks openllm \
--write_out \
--batch_size auto \
--show_config
Openllm V2
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/granite-4.0-h-tiny-FP8-dynamic",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=1,gpu_memory_utilization=0.7,disable_log_stats=True,enable_chunked_prefill=True,trust_remote_code=True \
--tasks leaderboard \
--apply_chat_template \
--fewshot_as_multiturn \
--write_out \
--batch_size auto \
--show_config
Coding Benchmarks
evalplus.evaluate --model "RedHatAI/granite-4.0-h-tiny-FP8-dynamic" \
--dataset "humaneval" \
--backend vllm \
--tp 1 \
--greedy
evalplus.evaluate --model "RedHatAI/granite-4.0-h-tiny-FP8-dynamic" \
--dataset "mbpp" \
--backend vllm \
--tp 1 \
--greedy
Accuracy Comparison
| Category | Benchmark | ibm-granite/granite-4.0-h-tiny | RedHatAI/granite-4.0-h-tiny-FP8-dynamic | Recovery (%) |
|---|---|---|---|---|
| OpenLLM V1 | ARC-Challenge (Acc, 25-shot) | 62.97 | 62.37 | 99.05 |
| GSM8K (Strict-Match, 5-shot) | 80.44 | 79.83 | 99.24 | |
| HellaSwag (Acc-Norm, 10-shot) | 61.75 | 61.56 | 99.69 | |
| MMLU (Acc, 5-shot) | 66.46 | 66.33 | 99.80 | |
| TruthfulQA (MC2, 0-shot) | 58.48 | 58.11 | 99.37 | |
| Winogrande (Acc, 5-shot) | 71.43 | 72.30 | 101.22 | |
| Average | 66.92 | 66.75 | 99.73 | |
| OpenLLM V2 | IFEval (Inst Level Strict Acc, 0-shot) | 70.62 | 71.10 | 100.68 |
| MMLU-Pro (Acc, 5-shot) | 46.24 | 46.05 | 99.59 | |
| Average | 58.43 | 58.58 | 100.13 |
- Downloads last month
- -
Model tree for inference-optimization/granite-4.0-h-tiny-FP8-dynamic
Base model
ibm-granite/granite-4.0-h-tiny