LFM2.5-1.2B-Text2SQL (PyTorch)
A fine-tuned version of LiquidAI/LFM2.5-1.2B-Instruct for Text-to-SQL generation.
Model Description
This model was fine-tuned on 2000 synthetic Text-to-SQL examples generated using a teacher model (DeepSeek V3). The fine-tuning was performed using LoRA adapters with MLX on Apple Silicon, then fused into the base model.
Training Details
- Base Model: LiquidAI/LFM2.5-1.2B-Instruct
- Training Data: 2000 synthetic examples
- Training Method: LoRA fine-tuning (FP16)
- Iterations: 5400
- Hardware: Apple Silicon (MLX)
Performance
Model Comparison
| Metric | Teacher (DeepSeek V3) | Base Model | Fine-tuned |
|---|---|---|---|
| Exact Match | 60% | 48% | 72% |
| LLM-as-Judge | 90% | 75% | 87% |
| ROUGE-L | 92% | 83% | 94% |
| BLEU | 85% | 70% | 89% |
| Semantic Similarity | 96% | 93% | 97% |
Training Progression
The model shows consistent improvement across all checkpoints with no signs of overfitting.
Usage
PyTorch / Transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model = AutoModelForCausalLM.from_pretrained(
"hybridaione/LFM2.5-1.2B-Text2SQL",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("furukama/LFM2.5-1.2B-Text2SQL", trust_remote_code=True)
# Example query
prompt = '''CREATE TABLE employees (id INT, name VARCHAR, salary DECIMAL);
Question: What are the names of employees earning more than 50000?'''
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to(model.device)
outputs = model.generate(inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
License
This model is released under the Apache 2.0 license, following the base model's license.
- Downloads last month
- 19

