SentenceTransformer based on google/embeddinggemma-300m

This is a sentence-transformers model finetuned from google/embeddinggemma-300m. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: google/embeddinggemma-300m
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'Gemma3TextModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 3072, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
  (3): Dense({'in_features': 3072, 'out_features': 768, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
  (4): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("hreyulog/embedinggemma_arkts")
# Run inference
queries = [
    "Transform an array of points with all matrices. VERY IMPORTANT: Keep\nmatrix order \"value-touch-offset\" when transforming.\n\n@param pts",
]
documents = [
    "public pointValuesToPixel(pts: number[]) {\n    this.mMatrixValueToPx.mapPoints(pts);\n    this.mViewPortHandler.getMatrixTouch().mapPoints(pts);\n    this.mMatrixOffset.mapPoints(pts);\n  }",
    'makeNode(uiContext: UIContext): FrameNode {\n    this.rootNode = new FrameNode(uiContext);\n    if (this.rootNode !== null) {\n      this.rootRenderNode = this.rootNode.getRenderNode();\n    }\n    return this.rootNode;\n  }',
    'export interface OnlineLunarYear {\n  year: number;\n  zodiac: string;\n  ganzhi: string;\n  leapMonth: number;\n  isLeapYear: boolean;\n  leapMonthDays?: number;\n  solarTerms: SolarTermInfo[];\n  festivals: LunarFestival[];\n}',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[ 0.8923,  0.0264, -0.0212]])

Evaluation Results

On arkts-code-docstring dataset split test

Model Params MRR NDCG@5 Recall@1 Recall@5
embedinggemma_arkts 308M 0.7788 0.8034 0.7142 0.8769
QWEN3-Embedding-0.6B 596M 0.6776 0.7015 0.6141 0.7723
embeddinggemma-300m 308M 0.6399 0.6654 0.5740 0.7416
BGE-M3 567M 0.5283 0.5603 0.4464 0.6558
BGE-base-zh-v1.5 110M 0.3598 0.3903 0.2841 0.4816
BGE-base-en-v1.5 110M 0.3439 0.3637 0.2935 0.4227
E5-base-v2 110M 0.3073 0.3261 0.2596 0.3823
BM25 (jieba) 0.2043 0.2204 0.1643 0.2690

Training Details

Training Dataset

Dataset: hreyulog/arkts-code-docstring

  • Size: 39,122 training samples
  • Columns: sentence_0 and sentence_1
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1
    type string string
    details
    • min: 3 tokens
    • mean: 97.17 tokens
    • max: 512 tokens
    • min: 3 tokens
    • mean: 94.4 tokens
    • max: 512 tokens
  • Samples:
    sentence_0 sentence_1
    移除登录状态监听 public removeLoginStateListener(listener: (isLoggedIn: boolean) => void) {\n const index = this.loginStateListeners.indexOf(listener);\n if (index !== -1) {\n this.loginStateListeners.splice(index, 1);\n }\n }
    PUT请求 static put(url: string, data?: Object, config: RequestConfig = {}): Promise> {
    const putConfig: RequestConfig = {
    method: http.RequestMethod.PUT,
    headers: config.headers,
    timeout: config.timeout,
    data: data
    };
    return HttpUtil.request(url, putConfig);
    }
    Transform an array of points with all matrices. VERY IMPORTANT: Keep\nmatrix order "value-touch-offset" when transforming.\n\n@param pts public pointValuesToPixel(pts: number[]) {\n this.mMatrixValueToPx.mapPoints(pts);\n this.mViewPortHandler.getMatrixTouch().mapPoints(pts);\n this.mMatrixOffset.mapPoints(pts);\n }
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • num_train_epochs: 2
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: None
  • warmup_ratio: None
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • enable_jit_checkpoint: False
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • use_cpu: False
  • seed: 42
  • data_seed: None
  • bf16: False
  • fp16: False
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: -1
  • ddp_backend: None
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • auto_find_batch_size: False
  • full_determinism: False
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • use_cache: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss
0.4088 500 0.3798
0.8177 1000 0.2489
1.2265 1500 0.1308
1.6353 2000 0.0877

Framework Versions

  • Python: 3.10.19
  • Sentence Transformers: 5.2.2
  • Transformers: 5.0.0
  • PyTorch: 2.9.1
  • Accelerate: 1.12.0
  • Datasets: 4.5.0
  • Tokenizers: 0.22.2

Citation

BibTeX

ArkTS-CodeSearch

@misc{he2026arktscodesearchopensourcearktsdataset,
      title={ArkTS-CodeSearch: A Open-Source ArkTS Dataset for Code Retrieval}, 
      author={Yulong He and Artem Ermakov and Sergey Kovalchuk and Artem Aliev and Dmitry Shalymov},
      year={2026},
      eprint={2602.05550},
      archivePrefix={arXiv},
      primaryClass={cs.SE},
      url={https://arxiv.org/abs/2602.05550}, 
}
Downloads last month
3
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hreyulog/embedinggemma_arkts

Finetuned
(181)
this model

Paper for hreyulog/embedinggemma_arkts