52Hz Tiny Fr - IMT Atlantique X 52 Hertz

This model is a fine-tuned version of openai/whisper-tiny on the Premier dataset organisé de 52 Hertz dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6664
  • Wer: 58.6381

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.0278 1.0 12 1.9196 763.3039
3.4923 2.0 24 1.4318 492.8121
1.9181 3.0 36 1.0781 178.0580
1.5961 4.0 48 0.9307 100.1261
1.2186 5.0 60 0.8604 93.4426
0.9392 6.0 72 0.8176 68.8525
0.8361 7.0 84 0.7492 38.7137
0.783 8.0 96 0.7197 69.2308
0.68 9.0 108 0.6915 40.7314
0.6685 10.0 120 0.6762 56.3682
0.5406 11.0 132 0.6753 63.0517
0.5741 12.0 144 0.6721 59.6469
0.5247 13.0 156 0.6677 62.9256
0.5278 14.0 168 0.6663 62.0429
0.4853 15.0 180 0.6664 58.6381

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.1+cu130
  • Datasets 4.4.2
  • Tokenizers 0.22.2
Downloads last month
274
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for hip94/whisper-tiny-fr

Quantized
(26)
this model