Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold3

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7192
  • Qwk: 0.6132
  • Mse: 0.7197
  • Rmse: 0.8484

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Qwk Mse Rmse
No log 1.0 2 10.2742 0.0 10.2722 3.2050
No log 2.0 4 9.7814 0.0 9.7793 3.1272
No log 3.0 6 8.9711 0.0 8.9691 2.9949
No log 4.0 8 7.5283 0.0 7.5268 2.7435
No log 5.0 10 5.8034 0.0423 5.8022 2.4088
No log 6.0 12 4.5242 0.0137 4.5230 2.1267
No log 7.0 14 3.7842 0.0 3.7831 1.9450
No log 8.0 16 2.9439 0.0 2.9430 1.7155
No log 9.0 18 2.2986 0.1673 2.2978 1.5159
No log 10.0 20 1.7883 0.0488 1.7876 1.3370
No log 11.0 22 1.3218 0.0202 1.3213 1.1495
No log 12.0 24 1.1069 0.0202 1.1065 1.0519
No log 13.0 26 1.1939 0.0365 1.1935 1.0925
No log 14.0 28 1.2194 0.0463 1.2189 1.1041
No log 15.0 30 0.9664 0.0833 0.9661 0.9829
No log 16.0 32 0.8848 0.2252 0.8847 0.9406
No log 17.0 34 0.9147 0.2667 0.9147 0.9564
No log 18.0 36 0.8259 0.3839 0.8260 0.9089
No log 19.0 38 0.6295 0.4309 0.6298 0.7936
No log 20.0 40 0.6090 0.4120 0.6093 0.7806
No log 21.0 42 0.6347 0.4723 0.6351 0.7969
No log 22.0 44 0.6742 0.4906 0.6745 0.8213
No log 23.0 46 0.5661 0.5157 0.5664 0.7526
No log 24.0 48 0.5470 0.5118 0.5475 0.7399
No log 25.0 50 0.5659 0.5405 0.5664 0.7526
No log 26.0 52 0.6043 0.5343 0.6049 0.7778
No log 27.0 54 0.6103 0.5733 0.6108 0.7816
No log 28.0 56 0.6132 0.5781 0.6138 0.7834
No log 29.0 58 0.6244 0.6286 0.6250 0.7906
No log 30.0 60 0.6832 0.5775 0.6840 0.8271
No log 31.0 62 0.6780 0.5939 0.6788 0.8239
No log 32.0 64 0.6931 0.6111 0.6937 0.8329
No log 33.0 66 0.7185 0.6087 0.7192 0.8481
No log 34.0 68 0.7462 0.6079 0.7468 0.8642
No log 35.0 70 0.7167 0.6000 0.7173 0.8470
No log 36.0 72 0.7189 0.5950 0.7196 0.8483
No log 37.0 74 0.7474 0.5959 0.7480 0.8649
No log 38.0 76 0.8152 0.5645 0.8160 0.9033
No log 39.0 78 0.7879 0.5666 0.7886 0.8880
No log 40.0 80 0.7641 0.5988 0.7644 0.8743
No log 41.0 82 0.7175 0.5963 0.7179 0.8473
No log 42.0 84 0.7647 0.5597 0.7654 0.8748
No log 43.0 86 0.7752 0.5648 0.7759 0.8809
No log 44.0 88 0.9973 0.5560 0.9977 0.9988
No log 45.0 90 1.0738 0.5306 1.0742 1.0365
No log 46.0 92 0.8349 0.5956 0.8357 0.9142
No log 47.0 94 0.7809 0.5650 0.7819 0.8842
No log 48.0 96 0.7247 0.6044 0.7254 0.8517
No log 49.0 98 0.7192 0.6132 0.7197 0.8484

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
3
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold3

Finetuned
(6188)
this model