Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold3
This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.7192
- Qwk: 0.6132
- Mse: 0.7197
- Rmse: 0.8484
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 100
Training results
| Training Loss | Epoch | Step | Validation Loss | Qwk | Mse | Rmse |
|---|---|---|---|---|---|---|
| No log | 1.0 | 2 | 10.2742 | 0.0 | 10.2722 | 3.2050 |
| No log | 2.0 | 4 | 9.7814 | 0.0 | 9.7793 | 3.1272 |
| No log | 3.0 | 6 | 8.9711 | 0.0 | 8.9691 | 2.9949 |
| No log | 4.0 | 8 | 7.5283 | 0.0 | 7.5268 | 2.7435 |
| No log | 5.0 | 10 | 5.8034 | 0.0423 | 5.8022 | 2.4088 |
| No log | 6.0 | 12 | 4.5242 | 0.0137 | 4.5230 | 2.1267 |
| No log | 7.0 | 14 | 3.7842 | 0.0 | 3.7831 | 1.9450 |
| No log | 8.0 | 16 | 2.9439 | 0.0 | 2.9430 | 1.7155 |
| No log | 9.0 | 18 | 2.2986 | 0.1673 | 2.2978 | 1.5159 |
| No log | 10.0 | 20 | 1.7883 | 0.0488 | 1.7876 | 1.3370 |
| No log | 11.0 | 22 | 1.3218 | 0.0202 | 1.3213 | 1.1495 |
| No log | 12.0 | 24 | 1.1069 | 0.0202 | 1.1065 | 1.0519 |
| No log | 13.0 | 26 | 1.1939 | 0.0365 | 1.1935 | 1.0925 |
| No log | 14.0 | 28 | 1.2194 | 0.0463 | 1.2189 | 1.1041 |
| No log | 15.0 | 30 | 0.9664 | 0.0833 | 0.9661 | 0.9829 |
| No log | 16.0 | 32 | 0.8848 | 0.2252 | 0.8847 | 0.9406 |
| No log | 17.0 | 34 | 0.9147 | 0.2667 | 0.9147 | 0.9564 |
| No log | 18.0 | 36 | 0.8259 | 0.3839 | 0.8260 | 0.9089 |
| No log | 19.0 | 38 | 0.6295 | 0.4309 | 0.6298 | 0.7936 |
| No log | 20.0 | 40 | 0.6090 | 0.4120 | 0.6093 | 0.7806 |
| No log | 21.0 | 42 | 0.6347 | 0.4723 | 0.6351 | 0.7969 |
| No log | 22.0 | 44 | 0.6742 | 0.4906 | 0.6745 | 0.8213 |
| No log | 23.0 | 46 | 0.5661 | 0.5157 | 0.5664 | 0.7526 |
| No log | 24.0 | 48 | 0.5470 | 0.5118 | 0.5475 | 0.7399 |
| No log | 25.0 | 50 | 0.5659 | 0.5405 | 0.5664 | 0.7526 |
| No log | 26.0 | 52 | 0.6043 | 0.5343 | 0.6049 | 0.7778 |
| No log | 27.0 | 54 | 0.6103 | 0.5733 | 0.6108 | 0.7816 |
| No log | 28.0 | 56 | 0.6132 | 0.5781 | 0.6138 | 0.7834 |
| No log | 29.0 | 58 | 0.6244 | 0.6286 | 0.6250 | 0.7906 |
| No log | 30.0 | 60 | 0.6832 | 0.5775 | 0.6840 | 0.8271 |
| No log | 31.0 | 62 | 0.6780 | 0.5939 | 0.6788 | 0.8239 |
| No log | 32.0 | 64 | 0.6931 | 0.6111 | 0.6937 | 0.8329 |
| No log | 33.0 | 66 | 0.7185 | 0.6087 | 0.7192 | 0.8481 |
| No log | 34.0 | 68 | 0.7462 | 0.6079 | 0.7468 | 0.8642 |
| No log | 35.0 | 70 | 0.7167 | 0.6000 | 0.7173 | 0.8470 |
| No log | 36.0 | 72 | 0.7189 | 0.5950 | 0.7196 | 0.8483 |
| No log | 37.0 | 74 | 0.7474 | 0.5959 | 0.7480 | 0.8649 |
| No log | 38.0 | 76 | 0.8152 | 0.5645 | 0.8160 | 0.9033 |
| No log | 39.0 | 78 | 0.7879 | 0.5666 | 0.7886 | 0.8880 |
| No log | 40.0 | 80 | 0.7641 | 0.5988 | 0.7644 | 0.8743 |
| No log | 41.0 | 82 | 0.7175 | 0.5963 | 0.7179 | 0.8473 |
| No log | 42.0 | 84 | 0.7647 | 0.5597 | 0.7654 | 0.8748 |
| No log | 43.0 | 86 | 0.7752 | 0.5648 | 0.7759 | 0.8809 |
| No log | 44.0 | 88 | 0.9973 | 0.5560 | 0.9977 | 0.9988 |
| No log | 45.0 | 90 | 1.0738 | 0.5306 | 1.0742 | 1.0365 |
| No log | 46.0 | 92 | 0.8349 | 0.5956 | 0.8357 | 0.9142 |
| No log | 47.0 | 94 | 0.7809 | 0.5650 | 0.7819 | 0.8842 |
| No log | 48.0 | 96 | 0.7247 | 0.6044 | 0.7254 | 0.8517 |
| No log | 49.0 | 98 | 0.7192 | 0.6132 | 0.7197 | 0.8484 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Model tree for genki10/Version_concise_ASAP_FineTuningBERT_AugV12_k1_task1_organization_k1_k1_fold3
Base model
google-bert/bert-base-uncased