|
|
--- |
|
|
tags: |
|
|
- sentence-transformers |
|
|
- sentence-similarity |
|
|
- feature-extraction |
|
|
- generated_from_trainer |
|
|
- dataset_size:910013 |
|
|
- loss:CosineSimilarityLoss |
|
|
base_model: intfloat/multilingual-e5-small |
|
|
widget: |
|
|
- source_sentence: business healing |
|
|
sentences: |
|
|
- modify ict system capacity |
|
|
- objetividade, inovadora,estudiosa,pesquisadora e organizada |
|
|
- business consulting |
|
|
- source_sentence: architecture acoustics |
|
|
sentences: |
|
|
- disicpline leader |
|
|
- 生产工艺开发及优化 |
|
|
- data analysis |
|
|
- source_sentence: arbitru natatie |
|
|
sentences: |
|
|
- criação cinematográfica |
|
|
- quarterly distribution |
|
|
- улучшение путешествий клиентов с помощью дополненной реальности |
|
|
- source_sentence: configuración de software antivirus |
|
|
sentences: |
|
|
- protocol & coordination |
|
|
- laurea magistrale biologia |
|
|
- deploy anti-virus software |
|
|
- source_sentence: child maltreatment counselling |
|
|
sentences: |
|
|
- book covers, flyers, posters, banners |
|
|
- tool and die making |
|
|
- cmc |
|
|
pipeline_tag: sentence-similarity |
|
|
library_name: sentence-transformers |
|
|
metrics: |
|
|
- pearson_cosine |
|
|
- spearman_cosine |
|
|
model-index: |
|
|
- name: SentenceTransformer based on intfloat/multilingual-e5-small |
|
|
results: |
|
|
- task: |
|
|
type: semantic-similarity |
|
|
name: Semantic Similarity |
|
|
dataset: |
|
|
name: sts dev |
|
|
type: sts-dev |
|
|
metrics: |
|
|
- type: pearson_cosine |
|
|
value: 0.9579653395486292 |
|
|
name: Pearson Cosine |
|
|
- type: spearman_cosine |
|
|
value: 0.8788941637037295 |
|
|
name: Spearman Cosine |
|
|
- task: |
|
|
type: semantic-similarity |
|
|
name: Semantic Similarity |
|
|
dataset: |
|
|
name: sts test |
|
|
type: sts-test |
|
|
metrics: |
|
|
- type: pearson_cosine |
|
|
value: 0.9579215714676803 |
|
|
name: Pearson Cosine |
|
|
- type: spearman_cosine |
|
|
value: 0.8795799743051839 |
|
|
name: Spearman Cosine |
|
|
--- |
|
|
|
|
|
# SentenceTransformer based on intfloat/multilingual-e5-small |
|
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
|
|
## Model Details |
|
|
|
|
|
### Model Description |
|
|
- **Model Type:** Sentence Transformer |
|
|
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) <!-- at revision c007d7ef6fd86656326059b28395a7a03a7c5846 --> |
|
|
- **Maximum Sequence Length:** 30 tokens |
|
|
- **Output Dimensionality:** 384 dimensions |
|
|
- **Similarity Function:** Cosine Similarity |
|
|
<!-- - **Training Dataset:** Unknown --> |
|
|
<!-- - **Language:** Unknown --> |
|
|
<!-- - **License:** Unknown --> |
|
|
|
|
|
### Model Sources |
|
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
|
|
### Full Model Architecture |
|
|
|
|
|
``` |
|
|
SentenceTransformer( |
|
|
(0): Transformer({'max_seq_length': 30, 'do_lower_case': False}) with Transformer model: BertModel |
|
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
|
(2): Normalize() |
|
|
) |
|
|
``` |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
|
|
First install the Sentence Transformers library: |
|
|
|
|
|
```bash |
|
|
pip install -U sentence-transformers |
|
|
``` |
|
|
|
|
|
Then you can load this model and run inference. |
|
|
```python |
|
|
from sentence_transformers import SentenceTransformer |
|
|
|
|
|
# Download from the 🤗 Hub |
|
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
|
# Run inference |
|
|
sentences = [ |
|
|
'child maltreatment counselling', |
|
|
'cmc', |
|
|
'book covers, flyers, posters, banners', |
|
|
] |
|
|
embeddings = model.encode(sentences) |
|
|
print(embeddings.shape) |
|
|
# [3, 384] |
|
|
|
|
|
# Get the similarity scores for the embeddings |
|
|
similarities = model.similarity(embeddings, embeddings) |
|
|
print(similarities.shape) |
|
|
# [3, 3] |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
### Direct Usage (Transformers) |
|
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Downstream Usage (Sentence Transformers) |
|
|
|
|
|
You can finetune this model on your own dataset. |
|
|
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
</details> |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Out-of-Scope Use |
|
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
|
--> |
|
|
|
|
|
## Evaluation |
|
|
|
|
|
### Metrics |
|
|
|
|
|
#### Semantic Similarity |
|
|
|
|
|
* Datasets: `sts-dev` and `sts-test` |
|
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
|
|
| Metric | sts-dev | sts-test | |
|
|
|:--------------------|:-----------|:-----------| |
|
|
| pearson_cosine | 0.958 | 0.9579 | |
|
|
| **spearman_cosine** | **0.8789** | **0.8796** | |
|
|
|
|
|
<!-- |
|
|
## Bias, Risks and Limitations |
|
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
### Recommendations |
|
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
|
--> |
|
|
|
|
|
## Training Details |
|
|
|
|
|
### Training Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 910,013 training samples |
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence1 | sentence2 | score | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
|
| type | string | string | float | |
|
|
| details | <ul><li>min: 3 tokens</li><li>mean: 8.91 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.83 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.52</li><li>max: 1.0</li></ul> | |
|
|
* Samples: |
|
|
| sentence1 | sentence2 | score | |
|
|
|:----------------------------------------------------------------------------------------------|:--------------------------------------------------|:------------------| |
|
|
| <code>edición de fotografias, fondos</code> | <code>material selection and cognition</code> | <code>0.0</code> | |
|
|
| <code>professional alarm installer,service tech.,customer service relations,sales,cctv</code> | <code>quantity surveying & reading charts</code> | <code>0.1</code> | |
|
|
| <code>diagnostico ecografico</code> | <code>waste identification system downtime</code> | <code>0.19</code> | |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Evaluation Dataset |
|
|
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 113,751 evaluation samples |
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code> |
|
|
* Approximate statistics based on the first 1000 samples: |
|
|
| | sentence1 | sentence2 | score | |
|
|
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------| |
|
|
| type | string | string | float | |
|
|
| details | <ul><li>min: 4 tokens</li><li>mean: 8.89 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 8.96 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> | |
|
|
* Samples: |
|
|
| sentence1 | sentence2 | score | |
|
|
|:----------------------------------------------------------|:-------------------------|:------------------| |
|
|
| <code>a2 dutch</code> | <code>a2 dutch</code> | <code>0.98</code> | |
|
|
| <code>design of mine dumps</code> | <code>设计矿山废料堆</code> | <code>1.0</code> | |
|
|
| <code>create soil and plant improvement programmes</code> | <code>创建土壤和植物改良计划</code> | <code>1.0</code> | |
|
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
|
```json |
|
|
{ |
|
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
|
} |
|
|
``` |
|
|
|
|
|
### Training Hyperparameters |
|
|
#### Non-Default Hyperparameters |
|
|
|
|
|
- `eval_strategy`: epoch |
|
|
- `per_device_train_batch_size`: 32 |
|
|
- `per_device_eval_batch_size`: 32 |
|
|
- `learning_rate`: 1e-05 |
|
|
- `num_train_epochs`: 4 |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `fp16`: True |
|
|
|
|
|
#### All Hyperparameters |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
- `overwrite_output_dir`: False |
|
|
- `do_predict`: False |
|
|
- `eval_strategy`: epoch |
|
|
- `prediction_loss_only`: True |
|
|
- `per_device_train_batch_size`: 32 |
|
|
- `per_device_eval_batch_size`: 32 |
|
|
- `per_gpu_train_batch_size`: None |
|
|
- `per_gpu_eval_batch_size`: None |
|
|
- `gradient_accumulation_steps`: 1 |
|
|
- `eval_accumulation_steps`: None |
|
|
- `torch_empty_cache_steps`: None |
|
|
- `learning_rate`: 1e-05 |
|
|
- `weight_decay`: 0.0 |
|
|
- `adam_beta1`: 0.9 |
|
|
- `adam_beta2`: 0.999 |
|
|
- `adam_epsilon`: 1e-08 |
|
|
- `max_grad_norm`: 1.0 |
|
|
- `num_train_epochs`: 4 |
|
|
- `max_steps`: -1 |
|
|
- `lr_scheduler_type`: linear |
|
|
- `lr_scheduler_kwargs`: {} |
|
|
- `warmup_ratio`: 0.1 |
|
|
- `warmup_steps`: 0 |
|
|
- `log_level`: passive |
|
|
- `log_level_replica`: warning |
|
|
- `log_on_each_node`: True |
|
|
- `logging_nan_inf_filter`: True |
|
|
- `save_safetensors`: True |
|
|
- `save_on_each_node`: False |
|
|
- `save_only_model`: False |
|
|
- `restore_callback_states_from_checkpoint`: False |
|
|
- `no_cuda`: False |
|
|
- `use_cpu`: False |
|
|
- `use_mps_device`: False |
|
|
- `seed`: 42 |
|
|
- `data_seed`: None |
|
|
- `jit_mode_eval`: False |
|
|
- `use_ipex`: False |
|
|
- `bf16`: False |
|
|
- `fp16`: True |
|
|
- `fp16_opt_level`: O1 |
|
|
- `half_precision_backend`: auto |
|
|
- `bf16_full_eval`: False |
|
|
- `fp16_full_eval`: False |
|
|
- `tf32`: None |
|
|
- `local_rank`: 0 |
|
|
- `ddp_backend`: None |
|
|
- `tpu_num_cores`: None |
|
|
- `tpu_metrics_debug`: False |
|
|
- `debug`: [] |
|
|
- `dataloader_drop_last`: False |
|
|
- `dataloader_num_workers`: 0 |
|
|
- `dataloader_prefetch_factor`: None |
|
|
- `past_index`: -1 |
|
|
- `disable_tqdm`: False |
|
|
- `remove_unused_columns`: True |
|
|
- `label_names`: None |
|
|
- `load_best_model_at_end`: False |
|
|
- `ignore_data_skip`: False |
|
|
- `fsdp`: [] |
|
|
- `fsdp_min_num_params`: 0 |
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
|
- `tp_size`: 0 |
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
|
- `deepspeed`: None |
|
|
- `label_smoothing_factor`: 0.0 |
|
|
- `optim`: adamw_torch |
|
|
- `optim_args`: None |
|
|
- `adafactor`: False |
|
|
- `group_by_length`: False |
|
|
- `length_column_name`: length |
|
|
- `ddp_find_unused_parameters`: None |
|
|
- `ddp_bucket_cap_mb`: None |
|
|
- `ddp_broadcast_buffers`: False |
|
|
- `dataloader_pin_memory`: True |
|
|
- `dataloader_persistent_workers`: False |
|
|
- `skip_memory_metrics`: True |
|
|
- `use_legacy_prediction_loop`: False |
|
|
- `push_to_hub`: False |
|
|
- `resume_from_checkpoint`: None |
|
|
- `hub_model_id`: None |
|
|
- `hub_strategy`: every_save |
|
|
- `hub_private_repo`: None |
|
|
- `hub_always_push`: False |
|
|
- `gradient_checkpointing`: False |
|
|
- `gradient_checkpointing_kwargs`: None |
|
|
- `include_inputs_for_metrics`: False |
|
|
- `include_for_metrics`: [] |
|
|
- `eval_do_concat_batches`: True |
|
|
- `fp16_backend`: auto |
|
|
- `push_to_hub_model_id`: None |
|
|
- `push_to_hub_organization`: None |
|
|
- `mp_parameters`: |
|
|
- `auto_find_batch_size`: False |
|
|
- `full_determinism`: False |
|
|
- `torchdynamo`: None |
|
|
- `ray_scope`: last |
|
|
- `ddp_timeout`: 1800 |
|
|
- `torch_compile`: False |
|
|
- `torch_compile_backend`: None |
|
|
- `torch_compile_mode`: None |
|
|
- `include_tokens_per_second`: False |
|
|
- `include_num_input_tokens_seen`: False |
|
|
- `neftune_noise_alpha`: None |
|
|
- `optim_target_modules`: None |
|
|
- `batch_eval_metrics`: False |
|
|
- `eval_on_start`: False |
|
|
- `use_liger_kernel`: False |
|
|
- `eval_use_gather_object`: False |
|
|
- `average_tokens_across_devices`: False |
|
|
- `prompts`: None |
|
|
- `batch_sampler`: batch_sampler |
|
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
|
|
</details> |
|
|
|
|
|
### Training Logs |
|
|
<details><summary>Click to expand</summary> |
|
|
|
|
|
| Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine | sts-test_spearman_cosine | |
|
|
|:------:|:-----:|:-------------:|:---------------:|:-----------------------:|:------------------------:| |
|
|
| 0.0352 | 500 | 0.1991 | - | - | - | |
|
|
| 0.0703 | 1000 | 0.0513 | - | - | - | |
|
|
| 0.1055 | 1500 | 0.0362 | - | - | - | |
|
|
| 0.1407 | 2000 | 0.0331 | - | - | - | |
|
|
| 0.1758 | 2500 | 0.0305 | - | - | - | |
|
|
| 0.2110 | 3000 | 0.029 | - | - | - | |
|
|
| 0.2461 | 3500 | 0.0273 | - | - | - | |
|
|
| 0.2813 | 4000 | 0.0268 | - | - | - | |
|
|
| 0.3165 | 4500 | 0.0255 | - | - | - | |
|
|
| 0.3516 | 5000 | 0.0245 | - | - | - | |
|
|
| 0.3868 | 5500 | 0.0238 | - | - | - | |
|
|
| 0.4220 | 6000 | 0.0236 | - | - | - | |
|
|
| 0.4571 | 6500 | 0.0233 | - | - | - | |
|
|
| 0.4923 | 7000 | 0.0222 | - | - | - | |
|
|
| 0.5275 | 7500 | 0.0225 | - | - | - | |
|
|
| 0.5626 | 8000 | 0.0219 | - | - | - | |
|
|
| 0.5978 | 8500 | 0.0212 | - | - | - | |
|
|
| 0.6330 | 9000 | 0.0215 | - | - | - | |
|
|
| 0.6681 | 9500 | 0.0207 | - | - | - | |
|
|
| 0.7033 | 10000 | 0.0204 | - | - | - | |
|
|
| 0.7384 | 10500 | 0.0203 | - | - | - | |
|
|
| 0.7736 | 11000 | 0.0203 | - | - | - | |
|
|
| 0.8088 | 11500 | 0.0202 | - | - | - | |
|
|
| 0.8439 | 12000 | 0.0202 | - | - | - | |
|
|
| 0.8791 | 12500 | 0.0196 | - | - | - | |
|
|
| 0.9143 | 13000 | 0.0193 | - | - | - | |
|
|
| 0.9494 | 13500 | 0.0193 | - | - | - | |
|
|
| 0.9846 | 14000 | 0.0193 | - | - | - | |
|
|
| 1.0 | 14219 | - | 0.0170 | 0.8694 | - | |
|
|
| 1.0198 | 14500 | 0.0188 | - | - | - | |
|
|
| 1.0549 | 15000 | 0.0178 | - | - | - | |
|
|
| 1.0901 | 15500 | 0.0179 | - | - | - | |
|
|
| 1.1253 | 16000 | 0.0178 | - | - | - | |
|
|
| 1.1604 | 16500 | 0.0178 | - | - | - | |
|
|
| 1.1956 | 17000 | 0.0172 | - | - | - | |
|
|
| 1.2307 | 17500 | 0.0172 | - | - | - | |
|
|
| 1.2659 | 18000 | 0.0175 | - | - | - | |
|
|
| 1.3011 | 18500 | 0.0178 | - | - | - | |
|
|
| 1.3362 | 19000 | 0.0174 | - | - | - | |
|
|
| 1.3714 | 19500 | 0.0175 | - | - | - | |
|
|
| 1.4066 | 20000 | 0.0171 | - | - | - | |
|
|
| 1.4417 | 20500 | 0.0175 | - | - | - | |
|
|
| 1.4769 | 21000 | 0.0173 | - | - | - | |
|
|
| 1.5121 | 21500 | 0.0171 | - | - | - | |
|
|
| 1.5472 | 22000 | 0.0174 | - | - | - | |
|
|
| 1.5824 | 22500 | 0.0172 | - | - | - | |
|
|
| 1.6176 | 23000 | 0.0168 | - | - | - | |
|
|
| 1.6527 | 23500 | 0.0165 | - | - | - | |
|
|
| 1.6879 | 24000 | 0.0169 | - | - | - | |
|
|
| 1.7230 | 24500 | 0.0169 | - | - | - | |
|
|
| 1.7582 | 25000 | 0.0171 | - | - | - | |
|
|
| 1.7934 | 25500 | 0.0165 | - | - | - | |
|
|
| 1.8285 | 26000 | 0.0165 | - | - | - | |
|
|
| 1.8637 | 26500 | 0.0165 | - | - | - | |
|
|
| 1.8989 | 27000 | 0.0165 | - | - | - | |
|
|
| 1.9340 | 27500 | 0.0164 | - | - | - | |
|
|
| 1.9692 | 28000 | 0.0164 | - | - | - | |
|
|
| 2.0 | 28438 | - | 0.0153 | 0.8751 | - | |
|
|
| 2.0044 | 28500 | 0.0162 | - | - | - | |
|
|
| 2.0395 | 29000 | 0.0156 | - | - | - | |
|
|
| 2.0747 | 29500 | 0.0154 | - | - | - | |
|
|
| 2.1099 | 30000 | 0.0157 | - | - | - | |
|
|
| 2.1450 | 30500 | 0.016 | - | - | - | |
|
|
| 2.1802 | 31000 | 0.015 | - | - | - | |
|
|
| 2.2153 | 31500 | 0.0155 | - | - | - | |
|
|
| 2.2505 | 32000 | 0.0154 | - | - | - | |
|
|
| 2.2857 | 32500 | 0.0152 | - | - | - | |
|
|
| 2.3208 | 33000 | 0.0152 | - | - | - | |
|
|
| 2.3560 | 33500 | 0.0152 | - | - | - | |
|
|
| 2.3912 | 34000 | 0.0154 | - | - | - | |
|
|
| 2.4263 | 34500 | 0.0153 | - | - | - | |
|
|
| 2.4615 | 35000 | 0.0154 | - | - | - | |
|
|
| 2.4967 | 35500 | 0.015 | - | - | - | |
|
|
| 2.5318 | 36000 | 0.0153 | - | - | - | |
|
|
| 2.5670 | 36500 | 0.0149 | - | - | - | |
|
|
| 2.6022 | 37000 | 0.015 | - | - | - | |
|
|
| 2.6373 | 37500 | 0.0152 | - | - | - | |
|
|
| 2.6725 | 38000 | 0.0152 | - | - | - | |
|
|
| 2.7076 | 38500 | 0.015 | - | - | - | |
|
|
| 2.7428 | 39000 | 0.0151 | - | - | - | |
|
|
| 2.7780 | 39500 | 0.0155 | - | - | - | |
|
|
| 2.8131 | 40000 | 0.0148 | - | - | - | |
|
|
| 2.8483 | 40500 | 0.0149 | - | - | - | |
|
|
| 2.8835 | 41000 | 0.0147 | - | - | - | |
|
|
| 2.9186 | 41500 | 0.015 | - | - | - | |
|
|
| 2.9538 | 42000 | 0.0148 | - | - | - | |
|
|
| 2.9890 | 42500 | 0.0146 | - | - | - | |
|
|
| 3.0 | 42657 | - | 0.0146 | 0.8775 | - | |
|
|
| 3.0241 | 43000 | 0.0142 | - | - | - | |
|
|
| 3.0593 | 43500 | 0.0144 | - | - | - | |
|
|
| 3.0945 | 44000 | 0.0146 | - | - | - | |
|
|
| 3.1296 | 44500 | 0.0142 | - | - | - | |
|
|
| 3.1648 | 45000 | 0.0144 | - | - | - | |
|
|
| 3.1999 | 45500 | 0.0141 | - | - | - | |
|
|
| 3.2351 | 46000 | 0.0142 | - | - | - | |
|
|
| 3.2703 | 46500 | 0.0142 | - | - | - | |
|
|
| 3.3054 | 47000 | 0.0142 | - | - | - | |
|
|
| 3.3406 | 47500 | 0.0145 | - | - | - | |
|
|
| 3.3758 | 48000 | 0.0142 | - | - | - | |
|
|
| 3.4109 | 48500 | 0.0143 | - | - | - | |
|
|
| 3.4461 | 49000 | 0.0145 | - | - | - | |
|
|
| 3.4813 | 49500 | 0.0142 | - | - | - | |
|
|
| 3.5164 | 50000 | 0.014 | - | - | - | |
|
|
| 3.5516 | 50500 | 0.0141 | - | - | - | |
|
|
| 3.5868 | 51000 | 0.0144 | - | - | - | |
|
|
| 3.6219 | 51500 | 0.0143 | - | - | - | |
|
|
| 3.6571 | 52000 | 0.0143 | - | - | - | |
|
|
| 3.6922 | 52500 | 0.0142 | - | - | - | |
|
|
| 3.7274 | 53000 | 0.014 | - | - | - | |
|
|
| 3.7626 | 53500 | 0.0142 | - | - | - | |
|
|
| 3.7977 | 54000 | 0.0141 | - | - | - | |
|
|
| 3.8329 | 54500 | 0.0141 | - | - | - | |
|
|
| 3.8681 | 55000 | 0.014 | - | - | - | |
|
|
| 3.9032 | 55500 | 0.0143 | - | - | - | |
|
|
| 3.9384 | 56000 | 0.0142 | - | - | - | |
|
|
| 3.9736 | 56500 | 0.0141 | - | - | - | |
|
|
| 4.0 | 56876 | - | 0.0146 | 0.8789 | - | |
|
|
| -1 | -1 | - | - | - | 0.8796 | |
|
|
|
|
|
</details> |
|
|
|
|
|
### Framework Versions |
|
|
- Python: 3.11.11 |
|
|
- Sentence Transformers: 4.1.0 |
|
|
- Transformers: 4.51.3 |
|
|
- PyTorch: 2.6.0+cu124 |
|
|
- Accelerate: 1.5.2 |
|
|
- Datasets: 3.6.0 |
|
|
- Tokenizers: 0.21.1 |
|
|
|
|
|
## Citation |
|
|
|
|
|
### BibTeX |
|
|
|
|
|
#### Sentence Transformers |
|
|
```bibtex |
|
|
@inproceedings{reimers-2019-sentence-bert, |
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
|
month = "11", |
|
|
year = "2019", |
|
|
publisher = "Association for Computational Linguistics", |
|
|
url = "https://arxiv.org/abs/1908.10084", |
|
|
} |
|
|
``` |
|
|
|
|
|
<!-- |
|
|
## Glossary |
|
|
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Authors |
|
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
|
--> |
|
|
|
|
|
<!-- |
|
|
## Model Card Contact |
|
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
|
--> |