|
|
|
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from .neuron import MultiStepParametricLIFNode, MultiStepLIFNode |
|
|
from spikingjelly.clock_driven import layer |
|
|
from timm.models.layers import to_2tuple, trunc_normal_, DropPath |
|
|
from timm.models.registry import register_model |
|
|
from timm.models.vision_transformer import _cfg |
|
|
from einops.layers.torch import Rearrange |
|
|
import torch.nn.functional as F |
|
|
from functools import partial |
|
|
|
|
|
__all__ = ['vit_snn',] |
|
|
|
|
|
|
|
|
def compute_non_zero_rate(x): |
|
|
x_shape = torch.tensor(list(x.shape)) |
|
|
all_neural = torch.prod(x_shape) |
|
|
z = torch.nonzero(x) |
|
|
print("After attention proj the none zero rate is", z.shape[0]/all_neural) |
|
|
|
|
|
|
|
|
class TemporalChangeScorer(nn.Module): |
|
|
def __init__(self): |
|
|
super().__init__() |
|
|
|
|
|
def forward(self, x, prev_drop_mask=None): |
|
|
T,B,C,H,W = x.shape |
|
|
x_mean = torch.mean(x, dim=2) |
|
|
temporal_diff = x_mean[1:] - x_mean[:-1] |
|
|
avg_temporal_change = torch.abs(temporal_diff).mean(dim=0) |
|
|
scores = avg_temporal_change.view(avg_temporal_change.shape[0], -1) |
|
|
|
|
|
if prev_drop_mask is not None: |
|
|
scores = scores.masked_fill(prev_drop_mask, float('-inf')) |
|
|
|
|
|
scores = F.softmax(scores, dim=1) |
|
|
|
|
|
return scores.reshape(B,H,W) |
|
|
|
|
|
class LocalSpatialSimilarity(nn.Module): |
|
|
def __init__(self,embedding_dim=None): |
|
|
super().__init__() |
|
|
self.cosine = nn.CosineSimilarity(dim=1, eps=1e-6) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, x, prev_drop_mask=None): |
|
|
T,B,C,H,W = x.shape |
|
|
|
|
|
x = torch.mean(x, dim=0) |
|
|
avg_kernel = torch.ones(C, C, 3, 3).to(x.device)/9.0 |
|
|
local_mean = F.conv2d(x, avg_kernel, padding=1) |
|
|
|
|
|
|
|
|
x_flat = x.view(B, C, -1) |
|
|
local_mean_flat = local_mean.view(B, C, -1) |
|
|
|
|
|
sim = self.cosine(x_flat, local_mean_flat) |
|
|
scores = -sim |
|
|
|
|
|
if prev_drop_mask is not None: |
|
|
scores = scores.masked_fill(prev_drop_mask, float('-inf')) |
|
|
scores = F.softmax(scores, dim=1) |
|
|
|
|
|
return scores.reshape(B,H,W) |
|
|
|
|
|
class MLP(nn.Module): |
|
|
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.): |
|
|
super().__init__() |
|
|
out_features = out_features or in_features |
|
|
hidden_features = hidden_features or in_features |
|
|
|
|
|
self.fc1_conv = nn.Conv2d(in_features, hidden_features, kernel_size=1, stride=1) |
|
|
self.fc1_bn = nn.BatchNorm2d(hidden_features) |
|
|
self.fc1_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
|
|
|
self.fc2_conv = nn.Conv2d(hidden_features, out_features, kernel_size=1, stride=1) |
|
|
self.fc2_bn = nn.BatchNorm2d(out_features) |
|
|
self.fc2_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
|
|
|
self.c_hidden = hidden_features |
|
|
self.c_output = out_features |
|
|
def forward(self, x): |
|
|
T,B,C,H,W = x.shape |
|
|
x = self.fc1_conv(x.flatten(0,1)) |
|
|
x = self.fc1_bn(x).reshape(T,B,self.c_hidden,H,W).contiguous() |
|
|
x = self.fc1_lif(x) |
|
|
|
|
|
x = self.fc2_conv(x.flatten(0,1)) |
|
|
x = self.fc2_bn(x).reshape(T,B,C,H,W).contiguous() |
|
|
x = self.fc2_lif(x) |
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
|
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): |
|
|
super().__init__() |
|
|
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." |
|
|
self.dim = dim |
|
|
self.num_heads = num_heads |
|
|
head_dim = dim // num_heads |
|
|
self.scale = 0.125 |
|
|
self.q_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1,bias=False) |
|
|
self.q_bn = nn.BatchNorm1d(dim) |
|
|
self.q_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.k_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1,bias=False) |
|
|
self.k_bn = nn.BatchNorm1d(dim) |
|
|
self.k_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.v_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1,bias=False) |
|
|
self.v_bn = nn.BatchNorm1d(dim) |
|
|
self.v_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
self.attn_lif = MultiStepLIFNode(tau=2.0, v_threshold=0.5, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.proj_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1) |
|
|
self.proj_bn = nn.BatchNorm1d(dim) |
|
|
self.proj_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
self.qkv_mp = nn.MaxPool1d(4) |
|
|
|
|
|
def forward(self, x): |
|
|
T,B,C,H,W = x.shape |
|
|
x = x.flatten(3) |
|
|
T, B, C, N = x.shape |
|
|
x_for_qkv = x.flatten(0, 1) |
|
|
x_feat = x |
|
|
q_conv_out = self.q_conv(x_for_qkv) |
|
|
q_conv_out = self.q_bn(q_conv_out).reshape(T,B,C,N).contiguous() |
|
|
q_conv_out = self.q_lif(q_conv_out) |
|
|
q = q_conv_out.transpose(-1, -2).reshape(T, B, N, self.num_heads, C//self.num_heads).permute(0, 1, 3, 2, 4).contiguous() |
|
|
|
|
|
k_conv_out = self.k_conv(x_for_qkv) |
|
|
k_conv_out = self.k_bn(k_conv_out).reshape(T,B,C,N).contiguous() |
|
|
k_conv_out = self.k_lif(k_conv_out) |
|
|
k = k_conv_out.transpose(-1, -2).reshape(T, B, N, self.num_heads, C//self.num_heads).permute(0, 1, 3, 2, 4).contiguous() |
|
|
|
|
|
|
|
|
v_conv_out = self.v_conv(x_for_qkv) |
|
|
v_conv_out = self.v_bn(v_conv_out).reshape(T,B,C,N).contiguous() |
|
|
v_conv_out = self.v_lif(v_conv_out) |
|
|
v = v_conv_out.transpose(-1, -2).reshape(T, B, N, self.num_heads, C//self.num_heads).permute(0, 1, 3, 2, 4).contiguous() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = k.transpose(-2, -1) @ v |
|
|
x = (q @ x) * self.scale |
|
|
|
|
|
x = x.transpose(3, 4).reshape(T, B, C, N).contiguous() |
|
|
x = self.attn_lif(x) |
|
|
x = x.flatten(0,1) |
|
|
x = self.proj_lif(self.proj_bn(self.proj_conv(x)).reshape(T,B,C,H,W)) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
class Block(nn.Module): |
|
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
|
drop_path=0., norm_layer=nn.LayerNorm, sr_ratio=1, k_value=1.): |
|
|
super().__init__() |
|
|
self.norm1 = norm_layer(dim) |
|
|
self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
|
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) |
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
self.norm2 = norm_layer(dim) |
|
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
|
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop) |
|
|
|
|
|
self.temporal_scorer = TemporalChangeScorer() |
|
|
self.spatial_scorer = LocalSpatialSimilarity() |
|
|
self.k_value = k_value |
|
|
|
|
|
def forward(self, x): |
|
|
T,B,C,H,W = x.shape |
|
|
temporal_score = self.temporal_scorer(x) |
|
|
spatial_score = self.spatial_scorer(x) |
|
|
final_score = temporal_score+spatial_score |
|
|
|
|
|
self.k = int(H*self.k_value) |
|
|
|
|
|
flat_scores = final_score.view(B, -1) |
|
|
_, indices = torch.topk(flat_scores, k=self.k*self.k, dim=1) |
|
|
|
|
|
token_indices = indices.unsqueeze(0).expand(T,-1,-1) |
|
|
|
|
|
x = x.flatten(3) |
|
|
original_x = x.clone() |
|
|
|
|
|
|
|
|
informative_tokens = x.gather(3, token_indices.unsqueeze(2).expand(-1, -1, C, -1)) |
|
|
slow_x = informative_tokens.reshape(T, B, C, self.k, self.k) |
|
|
slow_x = slow_x + self.attn(slow_x) |
|
|
slow_x = slow_x + self.mlp(slow_x) |
|
|
|
|
|
x = original_x.scatter_(3, token_indices.unsqueeze(2).expand(-1, -1, C, -1), slow_x.reshape(T,B,C,self.k*self.k)) |
|
|
x = x.reshape(T,B,C,H,W) |
|
|
return x |
|
|
|
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
|
def __init__(self, img_size_h=128, img_size_w=128, patch_size=4, in_channels=2, embed_dims=256): |
|
|
super().__init__() |
|
|
self.image_size = [img_size_h, img_size_w] |
|
|
patch_size = to_2tuple(patch_size) |
|
|
self.patch_size = patch_size |
|
|
self.C = in_channels |
|
|
self.H, self.W = self.image_size[0] // patch_size[0], self.image_size[1] // patch_size[1] |
|
|
self.num_patches = self.H * self.W |
|
|
self.proj_conv = nn.Conv2d(in_channels, embed_dims//8, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.proj_bn = nn.BatchNorm2d(embed_dims//8) |
|
|
self.proj_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
self.maxpool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) |
|
|
|
|
|
self.proj_conv1 = nn.Conv2d(embed_dims//8, embed_dims//4, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.proj_bn1 = nn.BatchNorm2d(embed_dims//4) |
|
|
self.proj_lif1 = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
self.maxpool1 = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) |
|
|
|
|
|
self.proj_conv2 = nn.Conv2d(embed_dims//4, embed_dims//2, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.proj_bn2 = nn.BatchNorm2d(embed_dims//2) |
|
|
self.proj_lif2 = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
self.maxpool2 = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) |
|
|
|
|
|
self.proj_conv3 = nn.Conv2d(embed_dims//2, embed_dims, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.proj_bn3 = nn.BatchNorm2d(embed_dims) |
|
|
self.proj_lif3 = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
self.maxpool3 = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) |
|
|
|
|
|
self.rpe_conv = nn.Conv2d(embed_dims, embed_dims, kernel_size=3, stride=1, padding=1, bias=False) |
|
|
self.rpe_bn = nn.BatchNorm2d(embed_dims) |
|
|
self.rpe_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') |
|
|
|
|
|
def forward(self, x): |
|
|
T, B, C, H, W = x.shape |
|
|
x = self.proj_conv(x.flatten(0, 1)) |
|
|
x = self.proj_bn(x).reshape(T, B, -1, H, W).contiguous() |
|
|
x = self.proj_lif(x).flatten(0,1).contiguous() |
|
|
x = self.maxpool(x) |
|
|
|
|
|
x = self.proj_conv1(x) |
|
|
x = self.proj_bn1(x).reshape(T, B, -1, H//2, W//2).contiguous() |
|
|
x = self.proj_lif1(x).flatten(0, 1).contiguous() |
|
|
x = self.maxpool1(x) |
|
|
|
|
|
x = self.proj_conv2(x) |
|
|
x = self.proj_bn2(x).reshape(T, B, -1, H//4, W//4).contiguous() |
|
|
x = self.proj_lif2(x).flatten(0, 1).contiguous() |
|
|
x = self.maxpool2(x) |
|
|
|
|
|
x = self.proj_conv3(x) |
|
|
x = self.proj_bn3(x).reshape(T, B, -1, H//8, W//8).contiguous() |
|
|
x = self.proj_lif3(x).flatten(0, 1).contiguous() |
|
|
x = self.maxpool3(x) |
|
|
|
|
|
x_feat = x.reshape(T, B, -1, H//16, W//16).contiguous() |
|
|
x = self.rpe_conv(x) |
|
|
x = self.rpe_bn(x).reshape(T, B, -1, H//16, W//16).contiguous() |
|
|
x = self.rpe_lif(x) |
|
|
x = x + x_feat |
|
|
|
|
|
H, W = H // self.patch_size[0], W // self.patch_size[1] |
|
|
return x, (H, W) |
|
|
|
|
|
class Spiking_vit(nn.Module): |
|
|
def __init__(self, |
|
|
img_size_h=128, img_size_w=128, patch_size=16, in_channels=2, num_classes=11, |
|
|
embed_dims=[64, 128, 256], num_heads=[1, 2, 4], mlp_ratios=[4, 4, 4], qkv_bias=False, qk_scale=None, |
|
|
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, |
|
|
depths=[6, 8, 6], sr_ratios=[8, 4, 2], k_values = [1,1,1,1,1,1,1,1] |
|
|
): |
|
|
super().__init__() |
|
|
self.num_classes = num_classes |
|
|
self.depths = depths |
|
|
self.k_values = k_values |
|
|
print("k_values", k_values) |
|
|
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depths)] |
|
|
|
|
|
patch_embed = PatchEmbed(img_size_h=img_size_h, |
|
|
img_size_w=img_size_w, |
|
|
patch_size=patch_size, |
|
|
in_channels=in_channels, |
|
|
embed_dims=embed_dims) |
|
|
num_patches = patch_embed.num_patches |
|
|
|
|
|
block = nn.ModuleList([Block( |
|
|
dim=embed_dims, num_heads=num_heads, mlp_ratio=mlp_ratios, qkv_bias=qkv_bias, |
|
|
qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[j], |
|
|
norm_layer=norm_layer, sr_ratio=sr_ratios, k_value=k_values[j]) |
|
|
for j in range(depths)]) |
|
|
|
|
|
setattr(self, f"patch_embed", patch_embed) |
|
|
setattr(self, f"block", block) |
|
|
|
|
|
|
|
|
self.head = nn.Linear(embed_dims, num_classes) if num_classes > 0 else nn.Identity() |
|
|
self.apply(self._init_weights) |
|
|
|
|
|
@torch.jit.ignore |
|
|
def _get_pos_embed(self, pos_embed, patch_embed, H, W): |
|
|
if H * W == self.patch_embed1.num_patches: |
|
|
return pos_embed |
|
|
else: |
|
|
return F.interpolate( |
|
|
pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2), |
|
|
size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1) |
|
|
|
|
|
def _init_weights(self, m): |
|
|
if isinstance(m, nn.Linear): |
|
|
trunc_normal_(m.weight, std=.02) |
|
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
|
nn.init.constant_(m.bias, 0) |
|
|
elif isinstance(m, nn.LayerNorm): |
|
|
nn.init.constant_(m.bias, 0) |
|
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
|
|
def forward_features(self, x): |
|
|
|
|
|
block = getattr(self, f"block") |
|
|
patch_embed = getattr(self, f"patch_embed") |
|
|
|
|
|
x, (H, W) = patch_embed(x) |
|
|
for blk in block: |
|
|
x = blk(x) |
|
|
return x.flatten(3).mean(3) |
|
|
|
|
|
def forward(self, x): |
|
|
T = 4 |
|
|
x = (x.unsqueeze(0)).repeat(T, 1, 1, 1, 1) |
|
|
x = self.forward_features(x) |
|
|
x = self.head(x.mean(0)) |
|
|
return x |
|
|
|
|
|
|
|
|
@register_model |
|
|
def vit_snn(pretrained=False, **kwargs): |
|
|
model = Spiking_vit( |
|
|
img_size_h=224, img_size_w=224, |
|
|
patch_size=16, embed_dims=512, num_heads=8, mlp_ratios=4, |
|
|
in_channels=3, num_classes=1000, qkv_bias=False, |
|
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=8, sr_ratios=1, |
|
|
**kwargs |
|
|
) |
|
|
model.default_cfg = _cfg() |
|
|
return model |
|
|
|
|
|
|
|
|
from timm.models import create_model |
|
|
|
|
|
if __name__ == '__main__': |
|
|
H = 128 |
|
|
W = 128 |
|
|
x = torch.randn(2, 3, 224, 224).cuda() |
|
|
|
|
|
|
|
|
|
|
|
model = create_model( |
|
|
'vit_snn', |
|
|
pretrained=False, |
|
|
drop_rate=0, |
|
|
drop_path_rate=0.1, |
|
|
drop_block_rate=None, |
|
|
).cuda() |
|
|
model.eval() |
|
|
y = model(x) |
|
|
print(y.shape) |
|
|
print('Test Good!') |