# from visualizer import get_local import torch import torch.nn as nn from .neuron import MultiStepParametricLIFNode, MultiStepLIFNode from spikingjelly.clock_driven import layer from timm.models.layers import to_2tuple, trunc_normal_, DropPath from timm.models.registry import register_model from timm.models.vision_transformer import _cfg from einops.layers.torch import Rearrange import torch.nn.functional as F from functools import partial __all__ = ['vit_snn',] def compute_non_zero_rate(x): x_shape = torch.tensor(list(x.shape)) all_neural = torch.prod(x_shape) z = torch.nonzero(x) print("After attention proj the none zero rate is", z.shape[0]/all_neural) class TemporalChangeScorer(nn.Module): def __init__(self): super().__init__() def forward(self, x, prev_drop_mask=None): # x: [T,B,C,H,W] T,B,C,H,W = x.shape x_mean = torch.mean(x, dim=2) # [T,B,H,W] temporal_diff = x_mean[1:] - x_mean[:-1] # [T-1,B,H,W] avg_temporal_change = torch.abs(temporal_diff).mean(dim=0) # [B,H,W] scores = avg_temporal_change.view(avg_temporal_change.shape[0], -1) # [B,H*W] if prev_drop_mask is not None: scores = scores.masked_fill(prev_drop_mask, float('-inf')) scores = F.softmax(scores, dim=1) return scores.reshape(B,H,W) # [B,H,W] class LocalSpatialSimilarity(nn.Module): def __init__(self,embedding_dim=None): super().__init__() self.cosine = nn.CosineSimilarity(dim=1, eps=1e-6) # self.local_weight = nn.Parameter(torch.tensor(0.5), requires_grad=True) # self.global_weight = nn.Parameter(torch.tensor(0.5), requires_grad=True) # self.conv = nn.Conv2d(embedding_dim, embedding_dim, kernel_size=3, stride=1, padding=1) def forward(self, x, prev_drop_mask=None): # x: [T,B,C,H,W] T,B,C,H,W = x.shape x = torch.mean(x, dim=0) # [B,C,H,W] avg_kernel = torch.ones(C, C, 3, 3).to(x.device)/9.0 local_mean = F.conv2d(x, avg_kernel, padding=1) # [B,C,H,W] # local_mean = self.conv(x) # [B,C,H,W] x_flat = x.view(B, C, -1) # [B,C,H*W] local_mean_flat = local_mean.view(B, C, -1) # [B,C,H*W] sim = self.cosine(x_flat, local_mean_flat) # [B,H*W] scores = -sim if prev_drop_mask is not None: scores = scores.masked_fill(prev_drop_mask, float('-inf')) scores = F.softmax(scores, dim=1) return scores.reshape(B,H,W) # [B,H,W] class MLP(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features # self.fc1 = linear_unit(in_features, hidden_features) self.fc1_conv = nn.Conv2d(in_features, hidden_features, kernel_size=1, stride=1) self.fc1_bn = nn.BatchNorm2d(hidden_features) self.fc1_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') # self.fc2 = linear_unit(hidden_features, out_features) self.fc2_conv = nn.Conv2d(hidden_features, out_features, kernel_size=1, stride=1) self.fc2_bn = nn.BatchNorm2d(out_features) self.fc2_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') # self.drop = nn.Dropout(0.1) self.c_hidden = hidden_features self.c_output = out_features def forward(self, x): T,B,C,H,W = x.shape x = self.fc1_conv(x.flatten(0,1)) x = self.fc1_bn(x).reshape(T,B,self.c_hidden,H,W).contiguous() x = self.fc1_lif(x) x = self.fc2_conv(x.flatten(0,1)) x = self.fc2_bn(x).reshape(T,B,C,H,W).contiguous() x = self.fc2_lif(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = 0.125 self.q_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1,bias=False) self.q_bn = nn.BatchNorm1d(dim) self.q_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') self.k_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1,bias=False) self.k_bn = nn.BatchNorm1d(dim) self.k_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') self.v_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1,bias=False) self.v_bn = nn.BatchNorm1d(dim) self.v_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') self.attn_lif = MultiStepLIFNode(tau=2.0, v_threshold=0.5, detach_reset=True, backend='cupy') self.proj_conv = nn.Conv1d(dim, dim, kernel_size=1, stride=1) self.proj_bn = nn.BatchNorm1d(dim) self.proj_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') self.qkv_mp = nn.MaxPool1d(4) def forward(self, x): T,B,C,H,W = x.shape x = x.flatten(3) T, B, C, N = x.shape x_for_qkv = x.flatten(0, 1) x_feat = x q_conv_out = self.q_conv(x_for_qkv) q_conv_out = self.q_bn(q_conv_out).reshape(T,B,C,N).contiguous() q_conv_out = self.q_lif(q_conv_out) q = q_conv_out.transpose(-1, -2).reshape(T, B, N, self.num_heads, C//self.num_heads).permute(0, 1, 3, 2, 4).contiguous() k_conv_out = self.k_conv(x_for_qkv) k_conv_out = self.k_bn(k_conv_out).reshape(T,B,C,N).contiguous() k_conv_out = self.k_lif(k_conv_out) k = k_conv_out.transpose(-1, -2).reshape(T, B, N, self.num_heads, C//self.num_heads).permute(0, 1, 3, 2, 4).contiguous() v_conv_out = self.v_conv(x_for_qkv) v_conv_out = self.v_bn(v_conv_out).reshape(T,B,C,N).contiguous() v_conv_out = self.v_lif(v_conv_out) v = v_conv_out.transpose(-1, -2).reshape(T, B, N, self.num_heads, C//self.num_heads).permute(0, 1, 3, 2, 4).contiguous() # if res_attn != None: # v = v + res_attn x = k.transpose(-2, -1) @ v x = (q @ x) * self.scale x = x.transpose(3, 4).reshape(T, B, C, N).contiguous() x = self.attn_lif(x) x = x.flatten(0,1) x = self.proj_lif(self.proj_bn(self.proj_conv(x)).reshape(T,B,C,H,W)) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., norm_layer=nn.LayerNorm, sr_ratio=1, k_value=1.): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, drop=drop) self.temporal_scorer = TemporalChangeScorer() self.spatial_scorer = LocalSpatialSimilarity() self.k_value = k_value def forward(self, x): T,B,C,H,W = x.shape temporal_score = self.temporal_scorer(x) # [B,H,W] spatial_score = self.spatial_scorer(x) # [B,H,W] final_score = temporal_score+spatial_score self.k = int(H*self.k_value) flat_scores = final_score.view(B, -1) # [B, H*W] _, indices = torch.topk(flat_scores, k=self.k*self.k, dim=1) # [B, kk] # indices = torch.tensor([[_ for _ in range(indices.shape[1])] for __ in range(indices.shape[0])]).cuda() token_indices = indices.unsqueeze(0).expand(T,-1,-1) # [T,B,kk] x = x.flatten(3) # [T,B,C,N] where N = H*W original_x = x.clone() # slow_path informative_tokens = x.gather(3, token_indices.unsqueeze(2).expand(-1, -1, C, -1)) # [T,B,C,kk] slow_x = informative_tokens.reshape(T, B, C, self.k, self.k) slow_x = slow_x + self.attn(slow_x) slow_x = slow_x + self.mlp(slow_x) x = original_x.scatter_(3, token_indices.unsqueeze(2).expand(-1, -1, C, -1), slow_x.reshape(T,B,C,self.k*self.k)) x = x.reshape(T,B,C,H,W) return x class PatchEmbed(nn.Module): def __init__(self, img_size_h=128, img_size_w=128, patch_size=4, in_channels=2, embed_dims=256): super().__init__() self.image_size = [img_size_h, img_size_w] patch_size = to_2tuple(patch_size) self.patch_size = patch_size self.C = in_channels self.H, self.W = self.image_size[0] // patch_size[0], self.image_size[1] // patch_size[1] self.num_patches = self.H * self.W self.proj_conv = nn.Conv2d(in_channels, embed_dims//8, kernel_size=3, stride=1, padding=1, bias=False) self.proj_bn = nn.BatchNorm2d(embed_dims//8) self.proj_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') self.maxpool = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) self.proj_conv1 = nn.Conv2d(embed_dims//8, embed_dims//4, kernel_size=3, stride=1, padding=1, bias=False) self.proj_bn1 = nn.BatchNorm2d(embed_dims//4) self.proj_lif1 = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') self.maxpool1 = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) self.proj_conv2 = nn.Conv2d(embed_dims//4, embed_dims//2, kernel_size=3, stride=1, padding=1, bias=False) self.proj_bn2 = nn.BatchNorm2d(embed_dims//2) self.proj_lif2 = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') self.maxpool2 = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) self.proj_conv3 = nn.Conv2d(embed_dims//2, embed_dims, kernel_size=3, stride=1, padding=1, bias=False) self.proj_bn3 = nn.BatchNorm2d(embed_dims) self.proj_lif3 = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') self.maxpool3 = torch.nn.MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False) self.rpe_conv = nn.Conv2d(embed_dims, embed_dims, kernel_size=3, stride=1, padding=1, bias=False) self.rpe_bn = nn.BatchNorm2d(embed_dims) self.rpe_lif = MultiStepLIFNode(tau=2.0, detach_reset=True, backend='cupy') def forward(self, x): T, B, C, H, W = x.shape x = self.proj_conv(x.flatten(0, 1)) # have some fire value x = self.proj_bn(x).reshape(T, B, -1, H, W).contiguous() x = self.proj_lif(x).flatten(0,1).contiguous() x = self.maxpool(x) x = self.proj_conv1(x) x = self.proj_bn1(x).reshape(T, B, -1, H//2, W//2).contiguous() x = self.proj_lif1(x).flatten(0, 1).contiguous() x = self.maxpool1(x) x = self.proj_conv2(x) x = self.proj_bn2(x).reshape(T, B, -1, H//4, W//4).contiguous() x = self.proj_lif2(x).flatten(0, 1).contiguous() x = self.maxpool2(x) x = self.proj_conv3(x) x = self.proj_bn3(x).reshape(T, B, -1, H//8, W//8).contiguous() x = self.proj_lif3(x).flatten(0, 1).contiguous() x = self.maxpool3(x) x_feat = x.reshape(T, B, -1, H//16, W//16).contiguous() x = self.rpe_conv(x) x = self.rpe_bn(x).reshape(T, B, -1, H//16, W//16).contiguous() x = self.rpe_lif(x) x = x + x_feat H, W = H // self.patch_size[0], W // self.patch_size[1] return x, (H, W) class Spiking_vit(nn.Module): def __init__(self, img_size_h=128, img_size_w=128, patch_size=16, in_channels=2, num_classes=11, embed_dims=[64, 128, 256], num_heads=[1, 2, 4], mlp_ratios=[4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[6, 8, 6], sr_ratios=[8, 4, 2], k_values = [1,1,1,1,1,1,1,1] #[0.8,0.8,0.7,0.7,0.7,0.7,0.6,0.6] ): super().__init__() self.num_classes = num_classes self.depths = depths self.k_values = k_values print("k_values", k_values) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depths)] # stochastic depth decay rule patch_embed = PatchEmbed(img_size_h=img_size_h, img_size_w=img_size_w, patch_size=patch_size, in_channels=in_channels, embed_dims=embed_dims) num_patches = patch_embed.num_patches block = nn.ModuleList([Block( dim=embed_dims, num_heads=num_heads, mlp_ratio=mlp_ratios, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[j], norm_layer=norm_layer, sr_ratio=sr_ratios, k_value=k_values[j]) for j in range(depths)]) setattr(self, f"patch_embed", patch_embed) setattr(self, f"block", block) # classification head 这里不需要脉冲,因为输入的是在T时长平均发射值 self.head = nn.Linear(embed_dims, num_classes) if num_classes > 0 else nn.Identity() self.apply(self._init_weights) @torch.jit.ignore def _get_pos_embed(self, pos_embed, patch_embed, H, W): if H * W == self.patch_embed1.num_patches: return pos_embed else: return F.interpolate( pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2), size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward_features(self, x): block = getattr(self, f"block") patch_embed = getattr(self, f"patch_embed") x, (H, W) = patch_embed(x) for blk in block: x = blk(x) return x.flatten(3).mean(3) def forward(self, x): T = 4 x = (x.unsqueeze(0)).repeat(T, 1, 1, 1, 1) x = self.forward_features(x) x = self.head(x.mean(0)) return x @register_model def vit_snn(pretrained=False, **kwargs): model = Spiking_vit( img_size_h=224, img_size_w=224, patch_size=16, embed_dims=512, num_heads=8, mlp_ratios=4, in_channels=3, num_classes=1000, qkv_bias=False, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=8, sr_ratios=1, **kwargs ) model.default_cfg = _cfg() return model from timm.models import create_model if __name__ == '__main__': H = 128 W = 128 x = torch.randn(2, 3, 224, 224).cuda() # new_patch = PatchEmbed() # new_patch.cuda() # y, _ = new_patch(x) model = create_model( 'vit_snn', pretrained=False, drop_rate=0, drop_path_rate=0.1, drop_block_rate=None, ).cuda() model.eval() y = model(x) print(y.shape) print('Test Good!')