rt-detr-britain-handbooks-photos

This model is a fine-tuned version of PekingU/rtdetr_r50vd on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.9066

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 90
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
No log 1.0 9 370.5898
542.4309 2.0 18 371.3819
522.3717 3.0 27 337.3348
459.2125 4.0 36 287.6073
395.5238 5.0 45 230.7955
286.8508 6.0 54 176.7677
228.066 7.0 63 136.6897
161.5375 8.0 72 99.1186
117.6188 9.0 81 78.7769
91.4598 10.0 90 60.9189
91.4598 11.0 99 48.0892
74.3667 12.0 108 41.1282
62.515 13.0 117 34.5201
52.9375 14.0 126 32.2538
44.9663 15.0 135 29.8093
40.1683 16.0 144 26.0296
36.8552 17.0 153 25.6356
31.1489 18.0 162 20.8665
28.862 19.0 171 18.5289
26.1241 20.0 180 16.8950
26.1241 21.0 189 16.1161
23.8333 22.0 198 16.3788
20.779 23.0 207 14.8389
19.1705 24.0 216 13.2360
18.1938 25.0 225 12.2007
16.0306 26.0 234 11.2442
15.0287 27.0 243 10.4789
14.8518 28.0 252 9.8145
13.2291 29.0 261 9.2670
12.8187 30.0 270 9.0118
12.8187 31.0 279 8.4731
11.8135 32.0 288 7.8816
11.8473 33.0 297 7.9214
10.3618 34.0 306 7.2866
11.291 35.0 315 6.7351
9.5297 36.0 324 6.5649
9.1887 37.0 333 6.3402
9.3662 38.0 342 6.8995
8.8807 39.0 351 6.7314
8.871 40.0 360 6.3205
8.871 41.0 369 6.2681
8.4285 42.0 378 6.1505
8.0272 43.0 387 5.7252
7.7106 44.0 396 5.7598
7.6973 45.0 405 5.8607
7.4816 46.0 414 5.8354
7.7731 47.0 423 6.1469
7.3577 48.0 432 5.7994
6.9262 49.0 441 5.7957
6.7817 50.0 450 5.3749
6.7817 51.0 459 5.4785
6.4421 52.0 468 5.5997
6.6866 53.0 477 5.6428
6.2332 54.0 486 5.2460
6.033 55.0 495 5.0726
6.4574 56.0 504 5.0716
5.8004 57.0 513 5.1538
6.3994 58.0 522 5.2739
5.4569 59.0 531 4.9320
6.8395 60.0 540 4.8320
6.8395 61.0 549 4.8788
5.6847 62.0 558 5.0752
6.0732 63.0 567 5.1419
5.5805 64.0 576 5.0951
5.5178 65.0 585 5.1321
5.1452 66.0 594 4.9179
5.4156 67.0 603 4.9118
5.5653 68.0 612 4.9279
5.2236 69.0 621 4.8551
5.3366 70.0 630 5.1762
5.3366 71.0 639 4.9683
5.2791 72.0 648 5.0238
5.5227 73.0 657 4.9368
4.9659 74.0 666 4.9490
5.1077 75.0 675 4.9549
5.1386 76.0 684 4.9591
5.2915 77.0 693 4.9849
4.9752 78.0 702 5.1533
5.2248 79.0 711 4.9699
5.2362 80.0 720 5.0121
5.2362 81.0 729 4.9954
5.1962 82.0 738 5.0266
4.9936 83.0 747 4.9814
4.9174 84.0 756 5.0074
5.1872 85.0 765 5.2822
5.3053 86.0 774 4.9256
4.7016 87.0 783 4.9502
5.1849 88.0 792 5.0745
5.2689 89.0 801 5.0272
4.9275 90.0 810 4.9066

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.1+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
145
Safetensors
Model size
42.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for davanstrien/rt-detr-newspaper-photo-detection

Finetuned
(14)
this model