SMILES
stringlengths 14
72
| Ki
float64 -5
1.05
|
|---|---|
Cc1nc(N)sc1-c1ccnc(Nc2cccc([N+](=O)[O-])c2)n1
| -1.30103
|
Cc1ccc2c(-c3ccnc(Nc4cccc(C(F)(F)F)c4)n3)c(-c3ccc(F)cc3)nn2n1
| -1.30103
|
Cc1ccc2c(-c3ccnc(Nc4ccc(F)c(F)c4)n3)c(-c3ccc(F)cc3)nn2n1
| -1
|
Cc1ccc2c(-c3ccnc(Nc4ccc5c(c4)OCCO5)n3)c(-c3ccc(F)cc3)nn2n1
| -1
|
Cc1ccc2c(-c3ccnc(Nc4ccc(Cl)c(C(F)(F)F)c4)n3)c(-c3ccc(F)cc3)nn2n1
| -1.69897
|
c1ccc(Nc2nccc(-c3c(C4CC4)nn4ncccc34)n2)cc1
| -4.278754
|
Fc1ccc(Nc2nccc(-c3c(C4CC4)nn4ncccc34)n2)cc1F
| -4.361728
|
COCCOc1cnn2ncc(-c3ccnc(Nc4cccc(OC)c4)n3)c2c1
| -1.90309
|
Cc1ccc2c(-c3ccnc(Nc4ccc(F)c(F)c4)n3)c(-c3ccccc3)nn2n1
| -1.477121
|
Cc1ccc2c(-c3ccnc(Nc4ccc(Cl)c(C(F)(F)F)c4)n3)c(-c3ccccc3)nn2n1
| -2
|
Cc1ccc2c(-c3ccnc(Nc4ccc5c(c4)OCCO5)n3)c(-c3ccccc3)nn2n1
| -1.477121
|
Cc1ccc2c(-c3ccnc(Nc4ccccc4)n3)c(-c3cccc(C(F)(F)F)c3)nn2n1
| -2.897627
|
Cc1ccc2c(-c3ccnc(Nc4ccc(F)c(F)c4)n3)c(-c3cccc(C(F)(F)F)c3)nn2n1
| -3.198657
|
Cc1ccc2c(-c3ccnc(Nc4ccc(Cl)c(C(F)(F)F)c4)n3)c(-c3cccc(C(F)(F)F)c3)nn2n1
| -2.799341
|
Cc1ccc2c(-c3ccnc(Nc4ccc5c(c4)OCCO5)n3)c(-c3cccc(C(F)(F)F)c3)nn2n1
| -2.176091
|
Cc1ccc2c(-c3ccnc(Nc4ccccc4)n3)c(-c3ccc(F)cc3)nn2n1
| -1.30103
|
c1ccc(Nc2nccc(-c3cnn4ncccc34)n2)cc1
| -1.161368
|
CN(c1ccccc1)c1nccc(-c2cnn3ncccc23)n1
| -4.298853
|
Cc1ccccc1Nc1nccc(-c2cnn3ncccc23)n1
| -3.778151
|
COc1cccc(Nc2nccc(-c3cnn4ncccc34)n2)c1
| -1
|
CC(C)c1ccc(Nc2nccc(-c3cnn4ncccc34)n2)cc1
| -1.477121
|
CCC(C)c1ccc(Nc2nccc(-c3cnn4ncccc34)n2)cc1
| -2.079181
|
CC(C)(C)c1ccc(Nc2nccc(-c3cnn4ncccc34)n2)cc1
| -1.69897
|
COc1ccc(Nc2nccc(-c3cnn4ncccc34)n2)cc1OC
| -1.041787
|
Fc1ccc(Nc2nccc(-c3cnn4ncccc34)n2)cc1F
| -1
|
Clc1ccc(Nc2nccc(-c3cnn4ncccc34)n2)cc1Cl
| -1
|
COc1cc(Nc2nccc(-c3cnn4ncccc34)n2)cc(OC)c1
| -1
|
Oc1ccc2c(-c3ccnc(Nc4cccc(C(F)(F)F)c4)n3)cnn2n1
| -1
|
COc1ccc2c(-c3ccnc(Nc4cccc(C(F)(F)F)c4)n3)cnn2n1
| -1.69897
|
CCOc1ccc2c(-c3ccnc(Nc4cccc(C(F)(F)F)c4)n3)cnn2n1
| -2.278754
|
CCCOc1ccc2c(-c3ccnc(Nc4cccc(C(F)(F)F)c4)n3)cnn2n1
| -2.897627
|
COc1cccc(Nc2nccc(-c3cnn4nc(OC)ccc34)n2)c1
| -2
|
COc1ccc2c(-c3ccnc(Nc4cccc(OC(F)(F)F)c4)n3)cnn2n1
| -1.69897
|
COc1ccc2c(-c3ccnc(Nc4ccc(C#N)cc4)n3)cnn2n1
| -1.69897
|
COc1ccc2c(-c3ccnc(Nc4ccc([N+](=O)[O-])cc4)n3)cnn2n1
| -1.845098
|
COc1cc(Nc2nccc(-c3cnn4nc(OC)ccc34)n2)cc(OC)c1
| -2.079181
|
COc1cc(Nc2nccc(-c3cnn4nc(OC)ccc34)n2)cc(C(F)(F)F)c1
| -2.278754
|
CCOc1ccc2c(-c3ccnc(Nc4cc(OC)cc(C(F)(F)F)c4)n3)cnn2n1
| -3.499687
|
COc1ccc2c(-c3ccnc(Nc4cc(C(F)(F)F)cc(C(F)(F)F)c4)n3)cnn2n1
| -2.799341
|
COc1ccc2c(-c3ccnc(Nc4ccc5c(c4)OCCO5)n3)cnn2n1
| -1.477121
|
Cc1ccc2c(-c3ccnc(Nc4ccc(C(F)(F)F)cc4)n3)cnn2n1
| -1.69897
|
COc1cc(Nc2nccc(-c3cnn4nc(C)ccc34)n2)cc(C(F)(F)F)c1
| -1
|
Cc1ccc2c(-c3ccnc(Nc4ccc5c(c4)OCCO5)n3)cnn2n1
| -1
|
FC(F)(F)c1cccc(Nc2nccc(-c3cnn4nc(-c5ccccc5)ccc34)n2)c1
| -2.176091
|
c1ccc(-c2ccc3c(-c4ccnc(Nc5ccc6c(c5)OCCO6)n4)cnn3n2)cc1
| -2.079181
|
c1ccc(Nc2nccc(-c3c(-c4ccccc4)nn4ncccc34)n2)cc1
| -1
|
FC(F)(F)c1cccc(Nc2nccc(-c3c(-c4ccccc4)nn4ncccc34)n2)c1
| -1
|
Fc1ccc(Nc2nccc(-c3c(-c4ccccc4)nn4ncccc34)n2)cc1F
| -1
|
Fc1cc(F)cc(Nc2nccc(-c3c(-c4ccccc4)nn4ncccc34)n2)c1
| -1
|
FC(F)(F)c1cc(Nc2nccc(-c3c(-c4ccccc4)nn4ncccc34)n2)ccc1Cl
| -1.30103
|
Fc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccccc3)n2)cc1
| -1.30103
|
Fc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3cccc(C(F)(F)F)c3)n2)cc1
| -1.30103
|
Fc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccc(F)c(F)c3)n2)cc1
| -1.30103
|
Fc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccc(Cl)c(C(F)(F)F)c3)n2)cc1
| -1.60206
|
Fc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccc4c(c3)OCCO4)n2)cc1
| -1
|
COc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccccc3)n2)cc1
| -3.699838
|
COc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3cccc(C(F)(F)F)c3)n2)cc1
| -4.499687
|
COc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccc(F)c(F)c3)n2)cc1
| -3.899821
|
COc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccc(Cl)c(C(F)(F)F)c3)n2)cc1
| -4.491362
|
COc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccc4c(c3)OCCO4)n2)cc1
| -3.699838
|
FC(F)(F)c1cccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccccc3)n2)c1
| -2.176091
|
Fc1ccc(Nc2nccc(-c3c(-c4cccc(C(F)(F)F)c4)nn4ncccc34)n2)cc1F
| -2.491362
|
FC(F)(F)c1cccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccc4c(c3)OCCO4)n2)c1
| -1.69897
|
FC(F)(F)c1cccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccc(Cl)c(C(F)(F)F)c3)n2)c1
| -3
|
Clc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccccc3)n2)cc1
| -3.09691
|
FC(F)(F)c1cccc(Nc2nccc(-c3c(-c4ccc(Cl)cc4)nn4ncccc34)n2)c1
| -3.399674
|
Fc1ccc(Nc2nccc(-c3c(-c4ccc(Cl)cc4)nn4ncccc34)n2)cc1F
| -3
|
FC(F)(F)c1cc(Nc2nccc(-c3c(-c4ccc(Cl)cc4)nn4ncccc34)n2)ccc1Cl
| -3.599883
|
Clc1ccc(-c2nn3ncccc3c2-c2ccnc(Nc3ccc4c(c3)OCCO4)n2)cc1
| -2.897627
|
Cc1ccc2c(-c3ccnc(Nc4ccccc4)n3)c(-c3ccccc3)nn2n1
| -1.69897
|
Cc1ccc2c(-c3ccnc(Nc4cccc(C(F)(F)F)c4)n3)c(-c3ccccc3)nn2n1
| -1.60206
|
COc1ccc(F)c(F)c1C(=O)c1cnc(NC2CCN(S(C)(=O)=O)CC2)nc1N
| -3.90309
|
COc1ccc(CNC(=O)Nc2ncc([N+](=O)[O-])s2)cc1
| -1.527716
|
Cc1cc(Nc2nc(-c3ccccc3)nc3ccccc23)n[nH]1
| -1.342423
|
CC(=O)Nc1ccc(Sc2nc(Nc3cc(C)n[nH]3)c3ccccc3n2)cc1
| -3.014521
|
O[C@H]1CC[C@H](Nc2ccc3nnc(-c4cccc(C(F)(F)F)c4)n3n2)CC1
| -2.361728
|
FC(F)(F)c1cccc(-c2nnc3ccc(NC4CCNCC4)nn23)c1
| -3.462398
|
O=[N+]([O-])c1ccc(NCCNc2ncc(-c3ncc[nH]3)c(-c3ccc(Cl)cc3Cl)n2)nc1
| 1.045757
|
Cc1cc(Nc2nc(-c3ccncc3)nc3ccccc23)n[nH]1
| -1.863323
|
Cc1cc(Nc2nc(Nc3ccccc3)nc3ccccc23)n[nH]1
| -1.380211
|
Cc1cc(Nc2nc(N(C)c3ccccc3)nc3ccccc23)n[nH]1
| -2.494155
|
Cc1cc(Nc2nc(Oc3ccccc3)nc3ccccc23)n[nH]1
| -1.70757
|
Cc1cc(Nc2nc(Sc3ccccc3)nc3ccccc23)n[nH]1
| -2.232996
|
Cc1cc(Nc2nc(Sc3ccccc3Cl)nc3ccccc23)n[nH]1
| -2.100371
|
Cc1cc(Nc2nc(Sc3cccc(Cl)c3)nc3ccccc23)n[nH]1
| -1.518514
|
Cc1cc(Nc2nc(Sc3ccc(Cl)cc3)nc3ccccc23)n[nH]1
| -1.643453
|
Cc1cc(Nc2nc(Sc3cccc(Cl)c3Cl)nc3ccccc23)n[nH]1
| -1.681241
|
Cc1cc(Nc2nc(Sc3ccc(Cl)cc3Cl)nc3ccccc23)n[nH]1
| -0.90309
|
Cc1cc(Nc2nc(Sc3c(Cl)cccc3Cl)nc3ccccc23)n[nH]1
| -2.053078
|
COc1ccccc1Sc1nc(Nc2cc(C)[nH]n2)c2ccccc2n1
| -2.334454
|
COc1ccc(Sc2nc(Nc3cc(C)[nH]n3)c3ccccc3n2)cc1
| -2.093422
|
COc1ccc(Sc2nc(Nc3cc(C)[nH]n3)c3ccccc3n2)cc1OC
| -3.067443
|
Cc1cc(Nc2nc(Sc3ccc(NS(C)(=O)=O)cc3)nc3ccccc23)n[nH]1
| -1.826075
|
CC(=O)N(C)c1ccc(Sc2nc(Nc3cc(C)[nH]n3)c3ccccc3n2)cc1
| -1.230449
|
CCC(=O)Nc1ccc(Sc2nc(Nc3cc(C)[nH]n3)c3ccccc3n2)cc1
| -3.176091
|
Cc1cc(Nc2nc(Sc3ccc(NC(=O)C4CC4)cc3)nc3ccccc23)n[nH]1
| -3.118595
|
CC(=O)Nc1ccc(Sc2nc(Nc3cc[nH]n3)c3ccccc3n2)cc1
| -2.781755
|
CC(=O)Nc1ccc(Sc2nc(Nc3cc(C4CC4)[nH]n3)c3ccccc3n2)cc1
| -2.528917
|
COc1cc2c(C)cc3c(c2cc1OC)C(=O)NC3=O
| -2.4133
|
O=C1NN=C(c2cccnc2)/C1=N/Nc1ccccc1Cl
| -2.30103
|
MoleculeACE ChEMBL262 Ki
ChEMBL262 dataset, originally part of ChEMBL database [1], processed in MoleculeACE [2] for activity cliff evaluation. It is intended to be use through scikit-fingerprints library.
The task is to predict the inhibitor constant (Ki) of molecules against the Glycogen synthase kinase-3 beta target.
| Characteristic | Description |
|---|---|
| Tasks | 1 |
| Task type | regression |
| Total samples | 856 |
| Recommended split | activity_cliff |
| Recommended metric | RMSE |
References
[1] B. Zdrazil et al., “The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods,” Nucleic Acids Research, vol. 52, no. D1, Nov. 2023, doi: https://doi.org/10.1093/nar/gkad1004.
[2] D. van Tilborg, A. Alenicheva, and F. Grisoni, “Exposing the Limitations of Molecular Machine Learning with Activity Cliffs,” Journal of Chemical Information and Modeling, vol. 62, no. 23, pp. 5938–5951, Dec. 2022, doi: https://doi.org/10.1021/acs.jcim.2c01073.
- Downloads last month
- 105