Dataset Viewer
Auto-converted to Parquet Duplicate
SMILES
stringlengths
17
217
Ki
float64
-4.86
1.7
CN1C2CCC1CC(OC(c1ccc(F)cc1)c1ccc(F)cc1)C2
-2.161368
O=C(NCCCN1CCN(c2cccc(Cl)c2Cl)CC1)c1cccc2c1-c1ccccc1C2=O
-1.556303
c1ccc(N2CCN(CCCn3c4ccccc4c4ccccc43)CC2)cc1
-3.383815
Oc1nc2c(N3CCN(Cc4ccccc4)CC3)cccc2[nH]1
-1.752048
O=C(NCCCN1CCN(c2ccccc2)CC1)c1cccc2c1-c1ccccc1C2=O
-2.633468
O=C(NCCCCN1CCN(c2cccc(Cl)c2Cl)CC1)c1ccc2c(c1)-c1ccccc1-2
0.045757
O=C(NCCCN1CCN(c2cccc(Cl)c2Cl)CC1)c1cccc2c1Cc1ccccc1-2
-2.230449
O=C(NCCCCN1CCN(c2cccc(Cl)c2Cl)CC1)c1ccc2c(c1)-c1ccccc1C2
-0.146128
O=C1Cc2c(ccc(Cl)c2N2CCN(Cc3ccccc3)CC2)N1
-2.771808
Fc1ccc(C(OC2CC3CCC(C2)N3Cc2ccc(Cl)c(Cl)c2)c2ccc(F)cc2)cc1
-2.44248
COc1ccc(NS(=O)(=O)c2ccc(Br)cc2)cc1N1CCN(C)CC1
-2.900001
O=C(NCCCCN1CCN(c2cccc(Cl)c2Cl)CC1)c1cccc2c1-c1ccccc1C2=O
-0.535716
COc1ccc(NS(=O)(=O)c2sc3ccc(Cl)cc3c2C)cc1N1CCN(C)CC1
-2.300008
CN1C2CCC1CC(OC(c1ccccc1)c1ccc(Cl)cc1)C2
-3.730782
O=C(NCCCN1CCN(c2ccccc2)CC1)c1ccc2c(c1)Cc1ccccc1-2
-3.164353
O=C(NCCCN1CCN(c2cccc(Cl)c2Cl)CC1)c1ccc2c(c1)Cc1ccccc1-2
-2.041393
O=C1Cc2c(cccc2N2CCN(Cc3ccccc3)CC2)N1
-0.732394
OC1CCc2c(c3ccccc3n2CCCN2CCN(c3ccccc3)CC2)C1
-3.603144
CN1[C@H]2CC[C@@H]1C[C@H](OC(c1ccc(Cl)cc1)c1ccc(Cl)cc1)C2
-2.342423
c1ccc(CN2CCN(c3cccc4[nH]cnc34)CC2)cc1
-2.939769
Fc1ccc(C(OCCN2C3CCC2CC(OC(c2ccc(F)cc2)c2ccc(F)cc2)C3)c2ccc(F)cc2)cc1
-2.330414
O=C(NCCCCN1CCN(c2cccc(Cl)c2Cl)CC1)C1c2ccccc2-c2ccccc21
-1.278754
O=C1c2ccccc2C(=O)N1CCCCCN1CCN(c2cccc(Cl)c2Cl)CC1
-0.892095
Fc1ccc(C(OCCOC2CC3CCC(C2)N3)c2ccc(F)cc2)cc1
-3.401401
O=C1c2ccccc2C(=O)N1CCCCN1CCN(c2cccc(Cl)c2Cl)CC1
-0.612784
O=C(NCCCN1CCN(c2ccccc2)CC1)C1c2ccccc2-c2ccccc21
-2.531479
Oc1cccc(N2CCN(Cc3ccccc3)CC2)c1
-1.460898
c1ccc(CN2CCN(c3cccc4[nH]ccc34)CC2)cc1
-1.549003
CN1C2CCC1CC(OC1c3ccccc3Cc3ccccc31)C2
-2.285557
CCN(CC)CCOCCOC1(c2ccccc2)CCCC1
-3.78533
Fc1ccc(C(O[C@@H]2C[C@@H]3CC[C@H](C2)N3CCCCc2ccccc2)c2ccc(F)cc2)cc1
-1.139879
C=CCN1C2CCC1CC(OC(c1ccc(F)cc1)c1ccc(F)cc1)C2
-2.113943
O=C(NCCCN1CCN(c2cccc(Cl)c2Cl)CC1)C1c2ccccc2-c2ccccc21
-1.380211
Brc1ccc(N2CCN(Cc3ccccc3)CC2)c2cc[nH]c12
-1.748188
FC(F)(F)c1nc2c(N3CCN(Cc4ccccc4)CC3)cccc2[nH]1
-1.167317
Clc1cccc(C(OC2CC3CCC(C2)N3CCCc2ccccc2)c2ccccc2)c1
-1.861534
O=C(NCCCCCN1CCN(c2cccc(Cl)c2Cl)CC1)c1cccc2c1-c1ccccc1C2=O
-1.447158
Clc1ccc2[nH]ccc2c1N1CCN(Cc2ccccc2)CC1
-1.979093
O=C(NCCCN1CCN(c2ccccc2)CC1)c1cccc2c1Cc1ccccc1-2
-2.633468
Fc1ccc(C(OC2CC3CCC(C2)N3Cc2cccc3ccccc23)c2ccc(F)cc2)cc1
-2.049218
Fc1ccc(C(OC2CC3CCC(C2)N3Cc2cc3ccccc3[nH]2)c2ccc(F)cc2)cc1
-1.725912
Fc1ccc(C(OC2CC3CCC(C2)N3Cc2ccccc2)c2ccc(F)cc2)cc1
-1.801404
CCCN1CCC[C@@H](c2cccc(OS(=O)(=O)c3ccc(C)cc3)c2)C1
-1.963788
CCCN1CCC[C@@H](c2cccc(S(C)(=O)=O)c2)C1
-3.115611
COc1ccccc1N1CCN(CNC(=O)c2ccc(Cl)cc2)CC1
-2.428135
N#Cc1cccc([C@@H]2CCCN(CC3CC3)C2)c1
-2.717671
O=C(NCN1CCN(c2ccccc2Cl)CC1)c1ccccc1
-2.247973
CCCN1CCC[C@@H](c2cccc(Br)c2)C1
-2.232996
CCCN1CCC[C@@H](c2cccc(CC#N)c2)C1
-2.706718
CCN1CCC[C@@H](c2cccc(C#N)c2)C1
-2.710963
O=S(=O)(Oc1cccc([C@@H]2CCCN(CCc3ccccc3)C2)c1)C(F)(F)F
-1.278754
CCc1sccc1N1CCC[C@@H](c2cccc(C#N)c2)C1
-1.748188
Cc1ccc(C(=O)NCN2CCN(c3ccccc3C#N)CC2)cc1
-2.576341
N#Cc1ccccc1N1CCN(CNC(=O)c2ccc(Cl)cc2)CC1
-2.778151
CCCN1CCC[C@@H](c2ccccc2)C1
-2.890421
CCCc1cccc([C@@H]2CCCN(CCC)C2)c1
-1.934498
CCCN1CCC[C@@H](c2cccc(SC)c2)C1
-2.143015
CCCN1CCC[C@@H](c2cccc(S(=O)(=O)N(C)C)c2)C1
-2.230449
Cc1cccc(C(=O)NCN2CCN(c3ccccc3Cl)CC2)c1
-2.666518
CC(C)N1CCC[C@@H](c2cccc(C#N)c2)C1
-2.428135
C1=C(c2ccccc2)CCN(C[C@@H]2CCC=C(c3ccccc3)C2)C1
-1.220108
CCCN1CCC[C@@H](c2cccc(-c3ccsc3)c2)C1
-1.892095
CCCN1CCC[C@@H](c2ccc(OS(=O)(=O)C(F)(F)F)cc2)C1
-3.055378
CCCN1CCC2c3cccc(OS(=O)(=O)C(F)(F)F)c3CCC21
-1.78533
N#Cc1cccc([C@@H]2CCCN(CCCc3ccccc3)C2)c1
-1.556303
Oc1ccc(C2=CCN(C[C@@H]3CCC=C(c4ccc(O)cc4)C3)CC2)cc1
-0.531479
CCCN1CCC[C@@H](c2cccc(C)c2)C1
-2.758155
CCCN1CCC[C@@H](c2cccc(CO)c2)C1
-3.16465
N#Cc1cccc([C@@H]2CCCNC2)c1
-2.800029
Cc1ccc(C(=O)NCN2CCN(c3ccccc3Cl)CC2)cc1
-1.690196
C=CCN1CCC[C@@H](c2cccc(C#N)c2)C1
-2.818226
CCCN1CCC[C@@H](c2ccc(OS(=O)(=O)C(F)(F)F)c(OS(=O)(=O)C(F)(F)F)c2)C1
-2.528917
CN1CCC[C@@H](c2cccc(C#N)c2)C1
-3.245266
COc1ccccc1N1CCN(CNC(=O)c2ccc(C)cc2)CC1
-2.240549
CCCN1CCC[C@@H](c2cccc(OS(C)(=O)=O)c2)C1
-2.990339
N#Cc1cccc([C@@H]2CCCN(CCc3ccccc3)C2)c1
-1.770852
CCCN1CCC[C@@H](c2cccc(OS(=O)(=O)C(F)(F)F)c2)C1
-1.832509
CCCN1CCC[C@@H](c2cccc(OCC(F)(F)F)c2)C1
-3.150449
Oc1ccc(C2=CCN(C[C@@H]3CCC=C(c4ccccc4)C3)CC2)cc1
-1.753583
COc1ccccc1N1CCN(CNC(=O)c2cccc(C)c2)CC1
-3.394452
N#Cc1ccccc1N1CCN(CNC(=O)c2cccc(Cl)c2)CC1
-3.356026
O=C(NCN1CCN(c2ccccc2Cl)CC1)c1ccc(Cl)cc1
-1.819544
CCCN1CCC[C@@H](c2cccc(C(C)=O)c2)C1
-3.332438
CCCN1CCC[C@@H](c2ccccc2OS(=O)(=O)C(F)(F)F)C1
-3.493179
CCC(C)N1CCC[C@@H](c2cccc(C#N)c2)C1
-2.021189
COc1ccccc1N1CCN(CNC(=O)c2cccc(Cl)c2)CC1
-3.161368
O=C(NCN1CCN(c2ccccc2Cl)CC1)c1cccc(Cl)c1
-2.561101
C#Cc1cccc([C@@H]2CCCN(CCC)C2)c1
-2.5302
Oc1ccc(C2=CCC[C@@H](CN3CC=C(c4ccccc4)CC3)C2)cc1
0.283997
CCCN1CCC[C@@H](c2cccc(C=O)c2)C1
-1.919078
COc1ccccc1N1CCN(CNC(=O)c2ccccc2)CC1
-3.392697
Clc1ccc(N2CCN(Cc3cccn4nccc34)CC2)cc1
-4.079181
Clc1ccc(N2CCN(Cc3cccc4ccnn34)CC2)cc1
-4
Clc1ccc(N2CCN(Cc3ccc4ccnn4c3)CC2)cc1
-3.690196
CN[C@@H]1Cc2cccc3ncn(c23)C1
-3.390759
CCCN1C[C@H](CSC)C[C@@H]2c3cccc4[nH]cc(c34)C[C@H]21
-0.347857
CCOC(=O)c1cnn2cccc(CN3CCN(c4ccc(Cl)cc4)CC3)c12
-4.079181
CN(C)[C@@H]1Cc2cccc3ncn(c23)C1
-3.469527
CN(C)[C@@H]1Cc2cccc3nc(O)n(c23)C1
-3.285332
OCc1cnn2cccc(CN3CCN(c4ccc(Cl)cc4)CC3)c12
-4.361728
End of preview. Expand in Data Studio

MoleculeACE ChEMBL234 Ki

ChEMBL234 dataset, originally part of ChEMBL database [1], processed in MoleculeACE [2] for activity cliff evaluation. It is intended to be use through scikit-fingerprints library.

The task is to predict the inhibitor constant (Ki) of molecules against the D(3) dopamine receptor target.

Characteristic Description
Tasks 1
Task type regression
Total samples 3657
Recommended split activity_cliff
Recommended metric RMSE

References

[1] B. Zdrazil et al., “The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods,” Nucleic Acids Research, vol. 52, no. D1, Nov. 2023, doi: https://doi.org/10.1093/nar/gkad1004. ‌

[2] D. van Tilborg, A. Alenicheva, and F. Grisoni, “Exposing the Limitations of Molecular Machine Learning with Activity Cliffs,” Journal of Chemical Information and Modeling, vol. 62, no. 23, pp. 5938–5951, Dec. 2022, doi: https://doi.org/10.1021/acs.jcim.2c01073. ‌

Downloads last month
111