Dataset Viewer
Auto-converted to Parquet Duplicate
text
stringlengths
0
87
গেমছক O
মাৰ্ভ B-OtherPER
এলবাৰ্ট I-OtherPER
মেট B-SportsManager
গুওকাছ I-SportsManager
আৰু O
বিল B-Athlete
ৱালটনে I-Athlete
বুলি O
কোৱাৰ O
বিপৰীতে O
আহমদ B-Athlete
ৰাছাদ I-Athlete
আৰু O
হান্না B-OtherPER
ষ্টৰ্ম I-OtherPER
এ O
চাইডলাইন O
ৰিপ'ৰ্টাৰ O
হিচাপে O
কাম O
কৰিছিল O
বব B-Athlete
কুইক I-Athlete
প্ৰাক্তন O
পেছাদাৰী O
বাস্কেটবল O
খেলুৱৈ O
হিটলাৰ B-Politician
আৰু O
ছিজলা B-Artist
ক O
একেটা O
ব্ৰেকেটত O
ৰখাটো O
বৰ্ণবাদী O
আৰু O
মাত্ৰ O
দেখুৱাই O
যে O
তেওঁ O
কিমান O
দূৰলৈ O
যাবলৈ O
সাজু O
নাগাৰামে B-VisualWork
নন্দি I-VisualWork
চহৰখনলৈ O
ধন্যবাদ O
১৯৭৫ O
চনৰ O
পৰা O
১৯৭৬ O
চনলৈকে O
তেওঁলোক O
মিনেছ'টা B-SportsGRP
টুইনছ I-SportsGRP
আৰু O
ছান B-SportsGRP
ডিয়েগো I-SportsGRP
পেড্ৰেছ I-SportsGRP
দুয়োটা O
দলৰ O
সৈতে O
জড়িত O
আছিল O
তাৰ O
পিছত O
প্ৰকাশ O
পায় O
যে O
মিনি B-Vehicle
কুপাৰ I-Vehicle
প্ৰকৃত O
সোণৰ O
পৰাই O
তৈয়াৰ O
কৰা O
হৈছিল O
ত্ৰি-ৰাজ্যিক B-OtherLOC
যুদ্ধ I-OtherLOC
চৰাই I-OtherLOC
সংগ্ৰহালয় I-OtherLOC
ক্লেৰমন্ট B-Station
কাউন্টি I-Station
বিমানবন্দৰ I-Station
ত O
অৱস্থিত O
ছবিখনৰ O
এটা O
অংশ O
১২ B-VisualWork
বছৰ I-VisualWork
End of preview. Expand in Data Studio

CLASSER: Cross-lingual Annotation Projection enhancement through Script Similarity for Fine-grained Named Entity Recognition

CLASSER is a framework for cross-lingual annotation projection with script-similarity-based refinement to create high-quality fine-grained named entity recognition datasets. It is part of the AWED-FiNER ecosystem.

Paper | GitHub | Interactive Demo

Utilizing CLASSER, fine-grained named entity recognition dataset is created in five languages: Assamese (as), Bodo (brx), Marathi (mr), Nepali (ne) and Sanskrit (sa).

CLASSER Framework Overview

CLASSER Framework Overview

Figure: Overview of the CLASSER framework.

Sample Usage

You can use the AWED-FiNER agentic tool to interact with expert models trained using this framework. Below is an example using the smolagents library:

from smolagents import CodeAgent, HfApiModel
from tool import AWEDFiNERTool

# Initialize the expert tool
ner_tool = AWEDFiNERTool()

# Initialize the agent (using a model of your choice)
agent = CodeAgent(tools=[ner_tool], model=HfApiModel())

# The agent will automatically use AWED-FiNER for specialized NER
# Case: Processing a vulnerable language (Bodo)
agent.run("Recognize the named entities in this Bodo sentence: 'बिथाङा दिल्लियाव थाङो।'")

CLASSER Dataset Statistics

Language Train set Development set Test set
SentencesEntitiesTokens SentencesEntitiesTokens SentencesEntitiesTokensIAA (κ)
Assamese (as) 140,257204,6111,972,697 15,58515,763219,114 1,0001,40714,2700.901
Bodo (brx) 212,835302,7132,958,455 23,64933,808329,145 1,0001,42314,0820.875
Marathi (mr) 611,902889,2178,135,813 67,99097,943948,020 1,0001,44313,9960.887
Nepali (ne) 414,561617,9575,531,683 46,06264,098642,489 1,0001,43614,1420.882
Sanskrit (sa) 265,114378,2873,488,871 29,45840,589377,306 1,0001,41212,9250.861

Note: IAA (Inter-Annotator Agreement) scores are represented using Cohen's κ.

Citation

If you use this dataset, please cite the following papers:

@misc{kaushik2026awedfiner,
  title        = {AWED-FiNER: Agents, Web Applications, and Expert Detectors for Fine-grained Named Entity Recognition across 36 Languages for 6.6 Billion Speakers},
  author       = {Kaushik, Prachuryya and Anand, Ashish},
  year         = {2026},
  note         = {arXiv preprint, submitted},
  archivePrefix= {arXiv},
  eprint       = {submit/7163987}
}

@inproceedings{kaushik2025classer,
  title     = {{CLASSER}: Cross-lingual Annotation Projection enhancement through Script Similarity for Fine-grained Named Entity Recognition},
  author    = {Kaushik, Prachuryya and Anand, Ashish},
  booktitle = {Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics},
  year      = {2025},
  publisher = {Association for Computational Linguistics},
  note      = {Main conference paper}
}
Downloads last month
61

Models trained or fine-tuned on prachuryyaIITG/CLASSER

Space using prachuryyaIITG/CLASSER 1

Collections including prachuryyaIITG/CLASSER

Paper for prachuryyaIITG/CLASSER