The ML.ENERGY Benchmark V3 Dataset
This dataset contains benchmark results from The ML.ENERGY Benchmark, which includes LLM and diffusion inference runs on NVIDIA H100 and B200 GPUs. You can use The ML.ENERGY Leaderboard to explore the benchmarking results.
Subsets
- llm: LLM benchmark runs with full metrics (energy, throughput, latency, etc.)
- diffusion: Diffusion model benchmark runs
Usage
You can programmatically work with the dataset using the ML.ENERGY data toolkit.
pip install mlenergy-data
from mlenergy_data.records import LLMRuns, DiffusionRuns
# Load (fast, parquet only ~few MB)
runs = LLMRuns.from_hf()
# Find the most energy-efficient model on GPQA
best = min(runs.task("gpqa"), key=lambda r: r.energy_per_token_joules)
print(f"{best.nickname}: {best.energy_per_token_joules:.3f} J/tok on {best.gpu_model}")
# Column access via .data
energies = runs.data.energy_per_token_joules # list[float]
Filter, group, and compare across GPU generations and model architectures:
# Compare GPU generations: best energy efficiency per model on GPQA
for gpu, group in runs.task("gpqa").group_by("gpu_model").items():
best = min(group, key=lambda r: r.energy_per_token_joules)
print(f"{gpu}: {best.nickname} @ {best.energy_per_token_joules:.3f} J/tok, "
f"{best.output_throughput_tokens_per_sec:.0f} tok/s")
# MoE, Dense, Hybrid: who's more energy-efficient?
for arch, group in runs.task("gpqa").gpu("B200").group_by("architecture").items():
best = min(group, key=lambda r: r.energy_per_token_joules)
print(f"{arch}: {best.nickname} @ {best.energy_per_token_joules:.3f} J/tok")
Bulk data methods auto-download raw files as needed:
# Power timelines, output lengths, etc.
power_tl = runs.timelines(metric="power.device_instant")
Schema
LLM Runs
| Field | Type | Description |
|---|---|---|
| task | str | Benchmark task (gpqa, lm-arena-chat, etc.) |
| model_id | str | Model identifier (org/model) |
| nickname | str | Human-readable model name |
| gpu_model | str | GPU model (H100, B200) |
| num_gpus | int | Number of GPUs used |
| max_num_seqs | int | Maximum batch size |
| energy_per_token_joules | float | Energy per output token (J) |
| output_throughput_tokens_per_sec | float | Output throughput (tok/s) |
| avg_power_watts | float | Average GPU power (W) |
| mean_itl_ms | float | Mean inter-token latency (ms) |
| is_stable | bool | Whether the run passed stability checks |
See the parquet files for the full list of fields.
Diffusion Runs
| Field | Type | Description |
|---|---|---|
| task | str | Benchmark task (text-to-image, text-to-video) |
| model_id | str | Model identifier (org/model) |
| nickname | str | Human-readable model name |
| gpu_model | str | GPU model (H100, B200, etc.) |
| num_gpus | int | Number of GPUs used |
| batch_size | int | Batch size |
| energy_per_generation_joules | float | Energy per generation (J) |
| height | int | Output height in pixels |
| width | int | Output width in pixels |
| batch_latency_s | float | Batch latency (s) |
| avg_power_watts | float | Average GPU power (W) |
Issues and Discussions
Please direct any issues, questions, or discussions to The ML.ENERGY Data Toolkit GitHub repository.
Citation
@inproceedings{mlenergy-neuripsdb25,
title={The {ML.ENERGY Benchmark}: Toward Automated Inference Energy Measurement and Optimization},
author={Jae-Won Chung and Jeff J. Ma and Ruofan Wu and Jiachen Liu and Oh Jun Kweon and Yuxuan Xia and Zhiyu Wu and Mosharaf Chowdhury},
year={2025},
booktitle={NeurIPS Datasets and Benchmarks},
}
License
Apache-2.0
- Downloads last month
- 45