You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Mumospee V2: A MUltiMOdal SPEEch Corpus

Dataset Description

MuMoSPEE v2 is a large-scale multimodal speech dataset containing audio and video recordings with transcripts, aggregated from:

  1. European Council events — official speeches, interviews, and doorstep appearances.
  2. Public YouTube meetings — webinars, conferences, panel discussions, and institutional videos.

This release is built upon the first version of the MuMoSPEE dataset, significantly expanding both the scale and diversity of content, and unifying audio and video data into a consistent metadata format suitable for large-scale speech and multimodal research.

The original MuMoSPEE v1 dataset is available at:
👉 https://huggingface.co/datasets/meetween/mumospee

The dataset is designed for research in speech recognition, multimodal modeling, meeting analysis, and AI-driven content understanding.

All media are linked via URLs, with transcripts and metadata included. Audio and video recordings are stored as separate entries.

Sources & HuggingFace pages:


Dataset Structure

Column Type Description
audio_url string URL to audio
video_url string URL to video
duration float Duration in seconds
language string Primary spoken language
transcript string Full transcript text in segments
split string Source tag (EU_Council or YouTube_Meeting)
license string License information for the content

Statistic Summary

Source / Tag Number of Records Total Duration (hours) Average Duration (hours)
EU_Council 45,411 3,665.68 0.0807
YouTube_Meeting 122,407 80,127.65 0.6546

Language Distribution

Language EU_Council Count EU_Council Duration (hours) YouTube_Meeting Count YouTube_Meeting Duration (hours)
English 23635 1754.21 95896 59568.38
German 3582 294.16 1467 831.99
French 2953 240.68 8222 5910.38
Spanish 2427 230.31 11382 9497.5
Italian 1374 122.0 1471 1092.87
Portuguese 1230 113.16 3030 2706.79
Swedish 1092 96.51 82 49.71
Dutch 1064 97.09 782 418.2
Polish 970 91.22 29 24.79
Czech 873 77.6 13 8.19
Croatian 826 71.11 2 2.96
Danish 787 71.06 5 0.95
Slovak 684 62.17 1 1.15
Finnish 647 62.9 5 5.36
Greek 604 37.16 13 4.87
Slovenian 519 40.49 0 0.0
Bulgarian 401 66.11 2 0.62
Hungarian 384 34.39 2 0.48
Luxembourgish 297 28.92 0 0.0
Romanian 295 25.66 1 0.07
Maltese 156 5.63 0 0.0
Lithuanian 92 5.32 0 0.0
Arabic 79 4.53 0 0.0
Latvian 73 5.18 0 0.0
Ukrainian 56 4.48 0 0.0
Russian 38 2.67 0 0.0
Estonian 37 2.36 0 0.0
Serbian 36 2.84 0 0.0
Georgian 33 1.99 0 0.0
Norwegian 29 2.98 0 0.0
Albanian 25 1.89 0 0.0
Macedonian 23 1.78 0 0.0
Bosnian 17 1.36 0 0.0
Montenegrin 16 1.09 0 0.0
Turkish 14 1.37 0 0.0
Belarusian 6 0.31 0 0.0
Moldavian 5 0.34 0 0.0
Catalan 4 0.41 0 0.0
Persian 4 0.36 0 0.0
Japanese 4 0.25 0 0.0
Indonesian 3 0.25 0 0.0
Viêt Namese 3 0.33 0 0.0
Chinese 3 0.28 0 0.0
Armenian 3 0.07 0 0.0
Korean 3 0.33 0 0.0
Hindi 1 0.1 0 0.0
Kazakh 1 0.1 0 0.0
Khmer 1 0.06 0 0.0
Tajik 1 0.09 0 0.0
Swahili 1 0.05 0 0.0
Español 0 0.0 1 2.2
Français 0 0.0 1 0.19

Notes:

  1. For recordings labeled as a single specific language but containing multiple spoken languages, the total duration is split equally among the detected languages, as precise language-level timestamps are not available. This avoids inflating the total duration across languages.
  2. EU_counts represent language occurrences rather than unique recordings; multilingual recordings contribute to multiple language counts, causing the summed total to exceed the number of distinct recordings.

Notes on Transcripts

  • EU Council (audio & video):
    Transcripts are generated using the Whisper ASR package. Each entry contains one or more languages per recording, corresponding to the full speech.

  • YouTube Meeting (video):
    Transcripts are extracted from YouTube subtitle tracks. They may be auto-generated, and some videos may lack transcripts entirely.


Usage

from datasets import load_dataset

# Load the dataset in streaming mode (recommended for large datasets)
dataset = load_dataset("meetween/mumospee_v2", streaming=True)

# Show dataset info
print(dataset)
# Example output:
# DatasetDict({
#     'train': Dataset(...)
# })


# Access first row
first_row = next(iter(dataset["train"]))
print("Transcript:", first_row["transcript"])
print("Audio URL:", first_row["audio_url"])
print("Video URL:", first_row["video_url"])
print("Language:", first_row["language"])
print("Duration (s):", first_row["duration"])


# Iterate over the first 5 examples
for i, example in enumerate(dataset["train"]):
    print(f"{i+1}. {example['language']} - {example['duration']}s")
    print(f"Transcript snippet: {example['transcript'][:100]}...\n")
    if i >= 4:
        break

# Access audio or video URLs
first_example = next(iter(dataset["train"]))
print("Listen to audio:", first_example["audio_url"])
print("Watch video:", first_example["video_url"])

Licensing Information

  • EU Council: Attribution only, non-commercial (© EU 2025).
  • YouTube: Metadata and transcripts are CC0 / Public Domain; videos follow original uploader’s license (CC-BY).

Users must comply with the source license when accessing media via URLs.

Downloads last month
83