danceability
float64 | energy
float64 | key
int64 | loudness
float64 | mode
int64 | speechiness
float64 | acousticness
float64 | instrumentalness
float64 | liveness
float64 | valence
float64 | tempo
float64 | duration_ms
int64 | time_signature
int64 | liked
int64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.803
| 0.624
| 7
| -6.764
| 0
| 0.0477
| 0.451
| 0.000734
| 0.1
| 0.628
| 95.968
| 304,524
| 4
| 0
|
0.762
| 0.703
| 10
| -7.951
| 0
| 0.306
| 0.206
| 0
| 0.0912
| 0.519
| 151.329
| 247,178
| 4
| 1
|
0.261
| 0.0149
| 1
| -27.528
| 1
| 0.0419
| 0.992
| 0.897
| 0.102
| 0.0382
| 75.296
| 286,987
| 4
| 0
|
0.722
| 0.736
| 3
| -6.994
| 0
| 0.0585
| 0.431
| 0.000001
| 0.123
| 0.582
| 89.86
| 208,920
| 4
| 1
|
0.787
| 0.572
| 1
| -7.516
| 1
| 0.222
| 0.145
| 0
| 0.0753
| 0.647
| 155.117
| 179,413
| 4
| 1
|
0.778
| 0.632
| 8
| -6.415
| 1
| 0.125
| 0.0404
| 0
| 0.0912
| 0.827
| 140.951
| 224,029
| 4
| 1
|
0.666
| 0.589
| 0
| -8.405
| 0
| 0.324
| 0.555
| 0
| 0.114
| 0.776
| 74.974
| 146,053
| 4
| 1
|
0.922
| 0.712
| 7
| -6.024
| 1
| 0.171
| 0.0779
| 0.00004
| 0.175
| 0.904
| 104.964
| 161,800
| 4
| 1
|
0.794
| 0.659
| 7
| -7.063
| 0
| 0.0498
| 0.143
| 0.00224
| 0.0944
| 0.308
| 112.019
| 247,460
| 4
| 0
|
0.853
| 0.668
| 3
| -6.995
| 1
| 0.447
| 0.263
| 0
| 0.104
| 0.745
| 157.995
| 165,363
| 4
| 1
|
0.297
| 0.993
| 9
| -7.173
| 1
| 0.118
| 0.000057
| 0.77
| 0.0766
| 0.178
| 127.693
| 182,427
| 4
| 0
|
0.816
| 0.433
| 1
| -9.19
| 1
| 0.241
| 0.00471
| 0
| 0.132
| 0.676
| 147.942
| 225,000
| 4
| 1
|
0.297
| 0.973
| 1
| -4.505
| 1
| 0.151
| 0.00146
| 0.918
| 0.139
| 0.234
| 102.757
| 170,520
| 4
| 0
|
0.564
| 0.743
| 6
| -5.782
| 1
| 0.22
| 0.584
| 0
| 0.101
| 0.191
| 168.849
| 185,667
| 4
| 1
|
0.64
| 0.957
| 8
| -2.336
| 1
| 0.0741
| 0.0431
| 0
| 0.0789
| 0.692
| 134.992
| 178,013
| 4
| 1
|
0.684
| 0.64
| 5
| -9.906
| 0
| 0.0309
| 0.221
| 0.0102
| 0.179
| 0.777
| 106.023
| 234,267
| 4
| 0
|
0.85
| 0.853
| 8
| -5.65
| 1
| 0.123
| 0.0155
| 0
| 0.105
| 0.734
| 142.03
| 136,901
| 4
| 1
|
0.745
| 0.456
| 8
| -9.482
| 1
| 0.0874
| 0.44
| 0
| 0.072
| 0.124
| 94.032
| 314,367
| 4
| 0
|
0.754
| 0.475
| 1
| -10.889
| 1
| 0.154
| 0.523
| 0
| 0.113
| 0.235
| 117.006
| 201,384
| 4
| 1
|
0.797
| 0.852
| 8
| -5.202
| 1
| 0.241
| 0.0555
| 0.000025
| 0.0536
| 0.48
| 136.035
| 102,353
| 4
| 1
|
0.798
| 0.835
| 9
| -3.832
| 1
| 0.202
| 0.165
| 0
| 0.112
| 0.609
| 150.04
| 139,240
| 4
| 1
|
0.438
| 0.0825
| 9
| -21.686
| 0
| 0.0695
| 0.983
| 0.0749
| 0.0461
| 0.37
| 106.275
| 270,000
| 5
| 0
|
0.802
| 0.549
| 5
| -8.6
| 0
| 0.0631
| 0.268
| 0.00496
| 0.0984
| 0.498
| 138.984
| 184,627
| 4
| 1
|
0.6
| 0.535
| 4
| -12.028
| 1
| 0.376
| 0.274
| 0
| 0.0984
| 0.205
| 180.036
| 176,000
| 3
| 1
|
0.729
| 0.533
| 9
| -10.104
| 0
| 0.444
| 0.747
| 0.000005
| 0.0848
| 0.422
| 155.999
| 225,953
| 4
| 0
|
0.867
| 0.457
| 1
| -7.908
| 1
| 0.237
| 0.0987
| 0
| 0.0967
| 0.193
| 101.052
| 210,733
| 4
| 1
|
0.65
| 0.545
| 4
| -7.712
| 0
| 0.0514
| 0.271
| 0.000007
| 0.102
| 0.113
| 76.503
| 240,924
| 4
| 1
|
0.809
| 0.574
| 5
| -8.546
| 0
| 0.385
| 0.4
| 0
| 0.105
| 0.756
| 151.974
| 185,493
| 4
| 1
|
0.749
| 0.839
| 6
| -4.847
| 1
| 0.297
| 0.0867
| 0
| 0.204
| 0.804
| 172.068
| 111,000
| 4
| 1
|
0.657
| 0.333
| 8
| -13.553
| 1
| 0.526
| 0.0608
| 0
| 0.157
| 0.313
| 148.168
| 98,615
| 4
| 1
|
0.689
| 0.68
| 7
| -6.551
| 0
| 0.0774
| 0.392
| 0.000001
| 0.107
| 0.567
| 75.445
| 168,574
| 4
| 1
|
0.668
| 0.459
| 6
| -12.072
| 0
| 0.118
| 0.0499
| 0.000001
| 0.408
| 0.525
| 159.021
| 186,415
| 4
| 1
|
0.291
| 0.98
| 1
| -5.138
| 1
| 0.153
| 0.00127
| 0.091
| 0.102
| 0.257
| 79.792
| 270,920
| 4
| 0
|
0.573
| 0.581
| 10
| -9.026
| 0
| 0.339
| 0.753
| 0.000001
| 0.13
| 0.351
| 76.506
| 169,347
| 4
| 1
|
0.608
| 0.471
| 0
| -8.664
| 1
| 0.0945
| 0.446
| 0.000004
| 0.369
| 0.682
| 70.702
| 165,800
| 3
| 0
|
0.307
| 0.0515
| 4
| -28.493
| 0
| 0.0324
| 0.708
| 0.631
| 0.42
| 0.154
| 128.056
| 125,533
| 4
| 0
|
0.784
| 0.7
| 7
| -7.649
| 0
| 0.108
| 0.491
| 0
| 0.108
| 0.769
| 82.028
| 190,067
| 4
| 0
|
0.448
| 0.97
| 1
| -4.197
| 1
| 0.105
| 0.000428
| 0.912
| 0.376
| 0.381
| 119.215
| 123,880
| 4
| 0
|
0.648
| 0.751
| 8
| -8.582
| 1
| 0.0806
| 0.0182
| 0.000401
| 0.0418
| 0.863
| 100.437
| 244,827
| 4
| 0
|
0.895
| 0.479
| 11
| -9.071
| 0
| 0.273
| 0.208
| 0
| 0.0902
| 0.719
| 146.049
| 134,554
| 4
| 1
|
0.358
| 0.977
| 8
| -8.179
| 0
| 0.0727
| 0.000082
| 0.924
| 0.103
| 0.449
| 137.681
| 194,160
| 4
| 0
|
0.742
| 0.423
| 1
| -9.795
| 0
| 0.108
| 0.832
| 0.00001
| 0.0644
| 0.712
| 75.026
| 194,000
| 4
| 1
|
0.603
| 0.886
| 5
| -3.777
| 0
| 0.0837
| 0.00045
| 0
| 0.26
| 0.395
| 126.025
| 229,933
| 4
| 1
|
0.839
| 0.629
| 3
| -5.663
| 0
| 0.147
| 0.241
| 0
| 0.108
| 0.724
| 94.008
| 207,772
| 4
| 1
|
0.184
| 0.974
| 8
| -6.237
| 0
| 0.106
| 0.000023
| 0.886
| 0.241
| 0.33
| 93.771
| 257,390
| 3
| 0
|
0.373
| 0.98
| 1
| -5.016
| 0
| 0.122
| 0.000319
| 0.906
| 0.105
| 0.34
| 97.346
| 211,947
| 4
| 0
|
0.826
| 0.76
| 11
| -6.382
| 0
| 0.117
| 0.392
| 0
| 0.132
| 0.813
| 99.974
| 216,285
| 4
| 0
|
0.924
| 0.748
| 2
| -3.645
| 1
| 0.188
| 0.174
| 0
| 0.207
| 0.381
| 121.063
| 209,667
| 4
| 1
|
0.267
| 0.0024
| 1
| -42.261
| 0
| 0.0531
| 0.995
| 0.897
| 0.0942
| 0.267
| 71.428
| 397,773
| 4
| 0
|
0.462
| 0.974
| 1
| -5.82
| 1
| 0.0816
| 0.000029
| 0.723
| 0.0751
| 0.399
| 107.877
| 186,576
| 3
| 0
|
0.616
| 0.534
| 10
| -10.264
| 0
| 0.483
| 0.639
| 0
| 0.0844
| 0.556
| 170.054
| 146,480
| 4
| 1
|
0.878
| 0.622
| 2
| -6.995
| 1
| 0.405
| 0.153
| 0
| 0.0917
| 0.638
| 84.991
| 163,765
| 4
| 1
|
0.581
| 0.85
| 5
| -3.45
| 0
| 0.0734
| 0.185
| 0.00046
| 0.149
| 0.357
| 152.018
| 178,809
| 4
| 1
|
0.656
| 0.381
| 0
| -8.757
| 0
| 0.0802
| 0.653
| 0
| 0.116
| 0.166
| 84.907
| 325,556
| 4
| 0
|
0.363
| 0.994
| 8
| -5.781
| 1
| 0.131
| 0.000037
| 0.582
| 0.207
| 0.139
| 108.017
| 247,564
| 4
| 0
|
0.568
| 0.788
| 2
| -7.654
| 1
| 0.069
| 0.191
| 0.000176
| 0.0774
| 0.328
| 139.959
| 219,077
| 4
| 1
|
0.809
| 0.653
| 0
| -7.178
| 0
| 0.306
| 0.335
| 0
| 0.11
| 0.639
| 139.981
| 199,093
| 4
| 1
|
0.757
| 0.451
| 2
| -11.121
| 1
| 0.292
| 0.0485
| 0.000002
| 0.337
| 0.506
| 150.035
| 167,062
| 4
| 1
|
0.364
| 0.00799
| 8
| -33.09
| 1
| 0.0395
| 0.978
| 0.894
| 0.109
| 0.0674
| 101.226
| 216,093
| 4
| 0
|
0.247
| 0.992
| 8
| -7.766
| 0
| 0.0772
| 0.000029
| 0.799
| 0.0808
| 0.318
| 142.891
| 237,093
| 4
| 0
|
0.598
| 0.673
| 2
| -10.431
| 1
| 0.0693
| 0.0422
| 0.000068
| 0.289
| 0.59
| 102.035
| 197,693
| 4
| 0
|
0.826
| 0.556
| 5
| -8.516
| 0
| 0.191
| 0.684
| 0
| 0.119
| 0.591
| 150.067
| 187,006
| 4
| 1
|
0.318
| 0.0633
| 6
| -23.869
| 1
| 0.0507
| 0.992
| 0.871
| 0.0831
| 0.0384
| 129.466
| 199,133
| 3
| 0
|
0.506
| 0.881
| 5
| -5.491
| 0
| 0.108
| 0.000163
| 0.00143
| 0.23
| 0.556
| 148.084
| 187,322
| 4
| 1
|
0.138
| 0.991
| 8
| -5.661
| 1
| 0.175
| 0.000015
| 0.831
| 0.337
| 0.0718
| 94.443
| 244,239
| 1
| 0
|
0.531
| 0.803
| 8
| -3.929
| 0
| 0.339
| 0.325
| 0
| 0.368
| 0.414
| 97.51
| 191,133
| 5
| 1
|
0.791
| 0.5
| 1
| -9.805
| 0
| 0.42
| 0.603
| 0
| 0.0993
| 0.492
| 130.027
| 170,582
| 4
| 1
|
0.68
| 0.877
| 5
| -10.241
| 0
| 0.0353
| 0.191
| 0.000656
| 0.349
| 0.922
| 108.674
| 185,107
| 4
| 0
|
0.752
| 0.468
| 0
| -9.966
| 1
| 0.333
| 0.805
| 0
| 0.136
| 0.716
| 82.795
| 179,253
| 4
| 1
|
0.797
| 0.654
| 8
| -7.373
| 1
| 0.245
| 0.633
| 0
| 0.106
| 0.64
| 145.121
| 172,520
| 4
| 1
|
0.774
| 0.853
| 1
| -6.933
| 1
| 0.246
| 0.0275
| 0
| 0.0876
| 0.619
| 123.041
| 106,000
| 4
| 1
|
0.851
| 0.686
| 11
| -8.143
| 1
| 0.222
| 0.597
| 0.000001
| 0.111
| 0.752
| 154.986
| 195,344
| 4
| 1
|
0.75
| 0.772
| 10
| -8.706
| 0
| 0.157
| 0.206
| 0
| 0.0748
| 0.561
| 139.98
| 224,496
| 4
| 1
|
0.843
| 0.656
| 1
| -11.184
| 1
| 0.0595
| 0.0466
| 0.0187
| 0.169
| 0.931
| 121.112
| 215,653
| 4
| 0
|
0.539
| 0.487
| 1
| -9.653
| 1
| 0.202
| 0.309
| 0
| 0.097
| 0.375
| 169.985
| 186,353
| 4
| 0
|
0.454
| 0.968
| 6
| -6.289
| 1
| 0.0787
| 0.000017
| 0.338
| 0.0472
| 0.535
| 103.965
| 250,262
| 4
| 0
|
0.446
| 0.977
| 10
| -5.036
| 0
| 0.0781
| 0.000535
| 0.472
| 0.105
| 0.339
| 172.059
| 284,400
| 4
| 0
|
0.827
| 0.804
| 9
| -5.846
| 1
| 0.128
| 0.455
| 0.000001
| 0.272
| 0.566
| 146.079
| 178,588
| 4
| 1
|
0.74
| 0.403
| 6
| -9.311
| 0
| 0.0635
| 0.509
| 0.0247
| 0.104
| 0.331
| 138.013
| 173,120
| 4
| 1
|
0.833
| 0.813
| 4
| -5.708
| 0
| 0.29
| 0.244
| 0
| 0.128
| 0.705
| 154.062
| 217,760
| 4
| 1
|
0.789
| 0.84
| 9
| -5.29
| 1
| 0.097
| 0.0309
| 0
| 0.0916
| 0.494
| 136.059
| 84,000
| 4
| 1
|
0.62
| 0.573
| 0
| -11.893
| 1
| 0.0423
| 0.271
| 0
| 0.0607
| 0.897
| 81.548
| 231,333
| 4
| 0
|
0.752
| 0.905
| 11
| -7.015
| 0
| 0.181
| 0.0931
| 0.000739
| 0.355
| 0.521
| 150.991
| 179,107
| 4
| 1
|
0.701
| 0.341
| 1
| -12.26
| 0
| 0.0418
| 0.499
| 0.903
| 0.359
| 0.163
| 105.513
| 151,507
| 3
| 0
|
0.83
| 0.707
| 2
| -5.777
| 1
| 0.277
| 0.167
| 0
| 0.0797
| 0.682
| 146.154
| 190,685
| 4
| 1
|
0.779
| 0.705
| 4
| -7.834
| 0
| 0.0827
| 0.277
| 0
| 0.0804
| 0.228
| 103.048
| 233,597
| 4
| 0
|
0.263
| 0.202
| 1
| -17.687
| 1
| 0.0408
| 0.984
| 0.905
| 0.089
| 0.12
| 71.462
| 545,747
| 4
| 0
|
0.338
| 0.988
| 8
| -7.29
| 0
| 0.0865
| 0.000084
| 0.833
| 0.0377
| 0.449
| 99.046
| 221,960
| 4
| 0
|
0.814
| 0.672
| 9
| -12.068
| 1
| 0.0619
| 0.0435
| 0
| 0.061
| 0.933
| 109.394
| 300,000
| 4
| 0
|
0.78
| 0.551
| 5
| -13.038
| 0
| 0.0625
| 0.0613
| 0.104
| 0.0331
| 0.969
| 126.009
| 491,933
| 4
| 0
|
0.567
| 0.797
| 1
| -3.071
| 0
| 0.2
| 0.392
| 0
| 0.116
| 0.654
| 110.882
| 218,732
| 3
| 1
|
0.651
| 0.811
| 10
| -13.87
| 1
| 0.0318
| 0.0648
| 0.0293
| 0.1
| 0.962
| 112.126
| 186,573
| 4
| 0
|
0.798
| 0.564
| 2
| -5.98
| 1
| 0.047
| 0.23
| 0.000018
| 0.183
| 0.394
| 108.004
| 254,218
| 4
| 0
|
0.798
| 0.746
| 10
| -8.639
| 1
| 0.0313
| 0.0304
| 0.361
| 0.0703
| 0.965
| 128.553
| 655,213
| 4
| 0
|
0.908
| 0.61
| 9
| -5.735
| 1
| 0.271
| 0.213
| 0.000034
| 0.241
| 0.443
| 140.006
| 197,613
| 4
| 1
|
0.783
| 0.836
| 0
| -9.223
| 0
| 0.0486
| 0.396
| 0.0236
| 0.135
| 0.831
| 108.966
| 222,667
| 4
| 0
|
0.83
| 0.612
| 10
| -7.446
| 0
| 0.079
| 0.112
| 0
| 0.0892
| 0.252
| 97.989
| 243,956
| 4
| 1
|
0.832
| 0.553
| 7
| -13.705
| 1
| 0.0487
| 0.0422
| 0.00356
| 0.249
| 0.89
| 119.825
| 215,693
| 4
| 0
|
0.764
| 0.812
| 7
| -4.946
| 1
| 0.179
| 0.202
| 0
| 0.126
| 0.742
| 139.961
| 194,973
| 4
| 1
|
0.901
| 0.939
| 6
| -2.762
| 1
| 0.274
| 0.117
| 0
| 0.0643
| 0.805
| 142.948
| 356,347
| 4
| 1
|
π΅ Spotify Song Preference Dataset
This dataset contains Spotify audio features for 195 songs categorized as liked or disliked by the user. It was created to build and train ML models that can predict user preferences in music based on quantitative audio features.
π₯ Dataset Overview
- Total songs: 195
- Format: CSV (
data.csv) - Source: Spotify API
- Target column:
liked(1 = liked, 0 = disliked) - Data type: Tabular
- Licensing: For academic and personal research use (derived from Spotify API)
π¦ Dataset Composition
| Category | Count | Description |
|---|---|---|
| Liked | 100 | Mostly French/American rap, rock, electro |
| Disliked | 95 | 25 metal, 25 classical, 25 disco, 20 rap |
| Neutral (Pop) | β Not included (user is neutral) |
π§ͺ Features
Extracted via Spotify API β "Get Audio Features for Several Tracks"
| Feature | Description |
|---|---|
danceability |
How suitable the track is for dancing (0β1) |
energy |
Perceived intensity (0β1) |
key |
Musical key (0 = C, 1 = Cβ―/Dβ...) |
loudness |
Overall volume in dB (-60 to 0) |
mode |
1 = major, 0 = minor |
speechiness |
Detects presence of speech (0β1) |
acousticness |
Confidence measure of being acoustic (0β1) |
instrumentalness |
Predicts presence of vocals (0β1) |
liveness |
Live audience presence (0β1) |
valence |
Positiveness of the song (0β1) |
tempo |
Beats per minute (BPM) |
duration_ms |
Duration of the song in milliseconds |
time_signature |
Estimated time signature (e.g. 4 = 4/4) |
liked (target) |
1 = liked, 0 = disliked |
π Exploratory Data Analysis (EDA)
β 1. Missing Values
- No missing values found
β 2. Class Distribution
- Liked (1): 100 songs
- Disliked (0): 95 songs
- Class is balanced
β 3. Data Types
- All features are numerical
- Target (
liked) is binary
β 4. Summary Statistics
- Energy, Danceability, Valence tend to be higher for liked songs
- Acousticness and Instrumentalness higher in disliked songs
β 5. Correlation Matrix
- Strong positive correlation:
energyβloudness - Negative correlation:
acousticnessβenergy,valence
β 6. Visual Highlights (Suggested)
- Boxplots:
energy,danceabilitybyliked - Countplot: class balance of
liked - Heatmap: correlation of features
- Scatter:
energyvsvalencecolored byliked
π€ ML Use Cases
You can use this dataset to train:
- Logistic Regression
- Random Forest
- KNN / SVM
- ANN / XGBoost / LightGBM
- Naive Bayes
π Visualizations
1. Boxplot: Energy Distribution by Liked
This shows how energy values are distributed for liked and disliked songs.

2. Boxplot: Danceability Distribution by Liked
This shows how danceability varies between liked and disliked songs.

3. Scatter Plot: Energy vs Valence
This plot helps visualize clusters or spread of liked vs disliked songs based on energy and valence.

4. Correlation Heatmap
This heatmap shows how all audio features correlate with each other.

5. Countplot: Liked vs Disliked Songs
This chart shows the number of songs in each class: 0 = Disliked, 1 = Liked.
It confirms that the dataset is nearly balanced.
π Statistical Testing
To determine which features are statistically different between liked and disliked songs, a two-sample t-test was performed using:
| Feature | p-value | Significance |
|---|---|---|
| danceability | 0.0000 | β Significant |
| energy | 0.0159 | β Significant |
| key | 0.5371 | β Not significant |
| loudness | 0.0000 | β Significant |
| mode | 0.7418 | β Not significant |
| speechiness | 0.0000 | β Significant |
| acousticness | 0.0134 | β Significant |
| instrumentalness | 0.0000 | β Significant |
| liveness | 0.8924 | β Not significant |
| valence | 0.0002 | β Significant |
| tempo | 0.0000 | β Significant |
| duration_ms | 0.0000 | β Significant |
| time_signature | 0.0023 | β Significant |
π Observation: - Features with p-value > 0.05 are statistically insignificant
- These features do not show a meaningful difference between liked and disliked songs
- We can safely remove the following features:
liveness
mode
key
β This simplifies the dataset and improves model performance by removing noise.
π Model Accuracy Comparison
Bar chart showing accuracy of different models used in the project.
- Downloads last month
- 34

