Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
danceability
float64
energy
float64
key
int64
loudness
float64
mode
int64
speechiness
float64
acousticness
float64
instrumentalness
float64
liveness
float64
valence
float64
tempo
float64
duration_ms
int64
time_signature
int64
liked
int64
0.803
0.624
7
-6.764
0
0.0477
0.451
0.000734
0.1
0.628
95.968
304,524
4
0
0.762
0.703
10
-7.951
0
0.306
0.206
0
0.0912
0.519
151.329
247,178
4
1
0.261
0.0149
1
-27.528
1
0.0419
0.992
0.897
0.102
0.0382
75.296
286,987
4
0
0.722
0.736
3
-6.994
0
0.0585
0.431
0.000001
0.123
0.582
89.86
208,920
4
1
0.787
0.572
1
-7.516
1
0.222
0.145
0
0.0753
0.647
155.117
179,413
4
1
0.778
0.632
8
-6.415
1
0.125
0.0404
0
0.0912
0.827
140.951
224,029
4
1
0.666
0.589
0
-8.405
0
0.324
0.555
0
0.114
0.776
74.974
146,053
4
1
0.922
0.712
7
-6.024
1
0.171
0.0779
0.00004
0.175
0.904
104.964
161,800
4
1
0.794
0.659
7
-7.063
0
0.0498
0.143
0.00224
0.0944
0.308
112.019
247,460
4
0
0.853
0.668
3
-6.995
1
0.447
0.263
0
0.104
0.745
157.995
165,363
4
1
0.297
0.993
9
-7.173
1
0.118
0.000057
0.77
0.0766
0.178
127.693
182,427
4
0
0.816
0.433
1
-9.19
1
0.241
0.00471
0
0.132
0.676
147.942
225,000
4
1
0.297
0.973
1
-4.505
1
0.151
0.00146
0.918
0.139
0.234
102.757
170,520
4
0
0.564
0.743
6
-5.782
1
0.22
0.584
0
0.101
0.191
168.849
185,667
4
1
0.64
0.957
8
-2.336
1
0.0741
0.0431
0
0.0789
0.692
134.992
178,013
4
1
0.684
0.64
5
-9.906
0
0.0309
0.221
0.0102
0.179
0.777
106.023
234,267
4
0
0.85
0.853
8
-5.65
1
0.123
0.0155
0
0.105
0.734
142.03
136,901
4
1
0.745
0.456
8
-9.482
1
0.0874
0.44
0
0.072
0.124
94.032
314,367
4
0
0.754
0.475
1
-10.889
1
0.154
0.523
0
0.113
0.235
117.006
201,384
4
1
0.797
0.852
8
-5.202
1
0.241
0.0555
0.000025
0.0536
0.48
136.035
102,353
4
1
0.798
0.835
9
-3.832
1
0.202
0.165
0
0.112
0.609
150.04
139,240
4
1
0.438
0.0825
9
-21.686
0
0.0695
0.983
0.0749
0.0461
0.37
106.275
270,000
5
0
0.802
0.549
5
-8.6
0
0.0631
0.268
0.00496
0.0984
0.498
138.984
184,627
4
1
0.6
0.535
4
-12.028
1
0.376
0.274
0
0.0984
0.205
180.036
176,000
3
1
0.729
0.533
9
-10.104
0
0.444
0.747
0.000005
0.0848
0.422
155.999
225,953
4
0
0.867
0.457
1
-7.908
1
0.237
0.0987
0
0.0967
0.193
101.052
210,733
4
1
0.65
0.545
4
-7.712
0
0.0514
0.271
0.000007
0.102
0.113
76.503
240,924
4
1
0.809
0.574
5
-8.546
0
0.385
0.4
0
0.105
0.756
151.974
185,493
4
1
0.749
0.839
6
-4.847
1
0.297
0.0867
0
0.204
0.804
172.068
111,000
4
1
0.657
0.333
8
-13.553
1
0.526
0.0608
0
0.157
0.313
148.168
98,615
4
1
0.689
0.68
7
-6.551
0
0.0774
0.392
0.000001
0.107
0.567
75.445
168,574
4
1
0.668
0.459
6
-12.072
0
0.118
0.0499
0.000001
0.408
0.525
159.021
186,415
4
1
0.291
0.98
1
-5.138
1
0.153
0.00127
0.091
0.102
0.257
79.792
270,920
4
0
0.573
0.581
10
-9.026
0
0.339
0.753
0.000001
0.13
0.351
76.506
169,347
4
1
0.608
0.471
0
-8.664
1
0.0945
0.446
0.000004
0.369
0.682
70.702
165,800
3
0
0.307
0.0515
4
-28.493
0
0.0324
0.708
0.631
0.42
0.154
128.056
125,533
4
0
0.784
0.7
7
-7.649
0
0.108
0.491
0
0.108
0.769
82.028
190,067
4
0
0.448
0.97
1
-4.197
1
0.105
0.000428
0.912
0.376
0.381
119.215
123,880
4
0
0.648
0.751
8
-8.582
1
0.0806
0.0182
0.000401
0.0418
0.863
100.437
244,827
4
0
0.895
0.479
11
-9.071
0
0.273
0.208
0
0.0902
0.719
146.049
134,554
4
1
0.358
0.977
8
-8.179
0
0.0727
0.000082
0.924
0.103
0.449
137.681
194,160
4
0
0.742
0.423
1
-9.795
0
0.108
0.832
0.00001
0.0644
0.712
75.026
194,000
4
1
0.603
0.886
5
-3.777
0
0.0837
0.00045
0
0.26
0.395
126.025
229,933
4
1
0.839
0.629
3
-5.663
0
0.147
0.241
0
0.108
0.724
94.008
207,772
4
1
0.184
0.974
8
-6.237
0
0.106
0.000023
0.886
0.241
0.33
93.771
257,390
3
0
0.373
0.98
1
-5.016
0
0.122
0.000319
0.906
0.105
0.34
97.346
211,947
4
0
0.826
0.76
11
-6.382
0
0.117
0.392
0
0.132
0.813
99.974
216,285
4
0
0.924
0.748
2
-3.645
1
0.188
0.174
0
0.207
0.381
121.063
209,667
4
1
0.267
0.0024
1
-42.261
0
0.0531
0.995
0.897
0.0942
0.267
71.428
397,773
4
0
0.462
0.974
1
-5.82
1
0.0816
0.000029
0.723
0.0751
0.399
107.877
186,576
3
0
0.616
0.534
10
-10.264
0
0.483
0.639
0
0.0844
0.556
170.054
146,480
4
1
0.878
0.622
2
-6.995
1
0.405
0.153
0
0.0917
0.638
84.991
163,765
4
1
0.581
0.85
5
-3.45
0
0.0734
0.185
0.00046
0.149
0.357
152.018
178,809
4
1
0.656
0.381
0
-8.757
0
0.0802
0.653
0
0.116
0.166
84.907
325,556
4
0
0.363
0.994
8
-5.781
1
0.131
0.000037
0.582
0.207
0.139
108.017
247,564
4
0
0.568
0.788
2
-7.654
1
0.069
0.191
0.000176
0.0774
0.328
139.959
219,077
4
1
0.809
0.653
0
-7.178
0
0.306
0.335
0
0.11
0.639
139.981
199,093
4
1
0.757
0.451
2
-11.121
1
0.292
0.0485
0.000002
0.337
0.506
150.035
167,062
4
1
0.364
0.00799
8
-33.09
1
0.0395
0.978
0.894
0.109
0.0674
101.226
216,093
4
0
0.247
0.992
8
-7.766
0
0.0772
0.000029
0.799
0.0808
0.318
142.891
237,093
4
0
0.598
0.673
2
-10.431
1
0.0693
0.0422
0.000068
0.289
0.59
102.035
197,693
4
0
0.826
0.556
5
-8.516
0
0.191
0.684
0
0.119
0.591
150.067
187,006
4
1
0.318
0.0633
6
-23.869
1
0.0507
0.992
0.871
0.0831
0.0384
129.466
199,133
3
0
0.506
0.881
5
-5.491
0
0.108
0.000163
0.00143
0.23
0.556
148.084
187,322
4
1
0.138
0.991
8
-5.661
1
0.175
0.000015
0.831
0.337
0.0718
94.443
244,239
1
0
0.531
0.803
8
-3.929
0
0.339
0.325
0
0.368
0.414
97.51
191,133
5
1
0.791
0.5
1
-9.805
0
0.42
0.603
0
0.0993
0.492
130.027
170,582
4
1
0.68
0.877
5
-10.241
0
0.0353
0.191
0.000656
0.349
0.922
108.674
185,107
4
0
0.752
0.468
0
-9.966
1
0.333
0.805
0
0.136
0.716
82.795
179,253
4
1
0.797
0.654
8
-7.373
1
0.245
0.633
0
0.106
0.64
145.121
172,520
4
1
0.774
0.853
1
-6.933
1
0.246
0.0275
0
0.0876
0.619
123.041
106,000
4
1
0.851
0.686
11
-8.143
1
0.222
0.597
0.000001
0.111
0.752
154.986
195,344
4
1
0.75
0.772
10
-8.706
0
0.157
0.206
0
0.0748
0.561
139.98
224,496
4
1
0.843
0.656
1
-11.184
1
0.0595
0.0466
0.0187
0.169
0.931
121.112
215,653
4
0
0.539
0.487
1
-9.653
1
0.202
0.309
0
0.097
0.375
169.985
186,353
4
0
0.454
0.968
6
-6.289
1
0.0787
0.000017
0.338
0.0472
0.535
103.965
250,262
4
0
0.446
0.977
10
-5.036
0
0.0781
0.000535
0.472
0.105
0.339
172.059
284,400
4
0
0.827
0.804
9
-5.846
1
0.128
0.455
0.000001
0.272
0.566
146.079
178,588
4
1
0.74
0.403
6
-9.311
0
0.0635
0.509
0.0247
0.104
0.331
138.013
173,120
4
1
0.833
0.813
4
-5.708
0
0.29
0.244
0
0.128
0.705
154.062
217,760
4
1
0.789
0.84
9
-5.29
1
0.097
0.0309
0
0.0916
0.494
136.059
84,000
4
1
0.62
0.573
0
-11.893
1
0.0423
0.271
0
0.0607
0.897
81.548
231,333
4
0
0.752
0.905
11
-7.015
0
0.181
0.0931
0.000739
0.355
0.521
150.991
179,107
4
1
0.701
0.341
1
-12.26
0
0.0418
0.499
0.903
0.359
0.163
105.513
151,507
3
0
0.83
0.707
2
-5.777
1
0.277
0.167
0
0.0797
0.682
146.154
190,685
4
1
0.779
0.705
4
-7.834
0
0.0827
0.277
0
0.0804
0.228
103.048
233,597
4
0
0.263
0.202
1
-17.687
1
0.0408
0.984
0.905
0.089
0.12
71.462
545,747
4
0
0.338
0.988
8
-7.29
0
0.0865
0.000084
0.833
0.0377
0.449
99.046
221,960
4
0
0.814
0.672
9
-12.068
1
0.0619
0.0435
0
0.061
0.933
109.394
300,000
4
0
0.78
0.551
5
-13.038
0
0.0625
0.0613
0.104
0.0331
0.969
126.009
491,933
4
0
0.567
0.797
1
-3.071
0
0.2
0.392
0
0.116
0.654
110.882
218,732
3
1
0.651
0.811
10
-13.87
1
0.0318
0.0648
0.0293
0.1
0.962
112.126
186,573
4
0
0.798
0.564
2
-5.98
1
0.047
0.23
0.000018
0.183
0.394
108.004
254,218
4
0
0.798
0.746
10
-8.639
1
0.0313
0.0304
0.361
0.0703
0.965
128.553
655,213
4
0
0.908
0.61
9
-5.735
1
0.271
0.213
0.000034
0.241
0.443
140.006
197,613
4
1
0.783
0.836
0
-9.223
0
0.0486
0.396
0.0236
0.135
0.831
108.966
222,667
4
0
0.83
0.612
10
-7.446
0
0.079
0.112
0
0.0892
0.252
97.989
243,956
4
1
0.832
0.553
7
-13.705
1
0.0487
0.0422
0.00356
0.249
0.89
119.825
215,693
4
0
0.764
0.812
7
-4.946
1
0.179
0.202
0
0.126
0.742
139.961
194,973
4
1
0.901
0.939
6
-2.762
1
0.274
0.117
0
0.0643
0.805
142.948
356,347
4
1
End of preview. Expand in Data Studio
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

🎡 Spotify Song Preference Dataset

This dataset contains Spotify audio features for 195 songs categorized as liked or disliked by the user. It was created to build and train ML models that can predict user preferences in music based on quantitative audio features.


πŸ“₯ Dataset Overview

  • Total songs: 195
  • Format: CSV (data.csv)
  • Source: Spotify API
  • Target column: liked (1 = liked, 0 = disliked)
  • Data type: Tabular
  • Licensing: For academic and personal research use (derived from Spotify API)

πŸ“¦ Dataset Composition

Category Count Description
Liked 100 Mostly French/American rap, rock, electro
Disliked 95 25 metal, 25 classical, 25 disco, 20 rap
Neutral (Pop) ❌ Not included (user is neutral)

πŸ§ͺ Features

Extracted via Spotify API – "Get Audio Features for Several Tracks"

Feature Description
danceability How suitable the track is for dancing (0–1)
energy Perceived intensity (0–1)
key Musical key (0 = C, 1 = Cβ™―/Dβ™­...)
loudness Overall volume in dB (-60 to 0)
mode 1 = major, 0 = minor
speechiness Detects presence of speech (0–1)
acousticness Confidence measure of being acoustic (0–1)
instrumentalness Predicts presence of vocals (0–1)
liveness Live audience presence (0–1)
valence Positiveness of the song (0–1)
tempo Beats per minute (BPM)
duration_ms Duration of the song in milliseconds
time_signature Estimated time signature (e.g. 4 = 4/4)
liked (target) 1 = liked, 0 = disliked

πŸ” Exploratory Data Analysis (EDA)

βœ… 1. Missing Values

  • No missing values found

βœ… 2. Class Distribution

  • Liked (1): 100 songs
  • Disliked (0): 95 songs
  • Class is balanced

βœ… 3. Data Types

  • All features are numerical
  • Target (liked) is binary

βœ… 4. Summary Statistics

  • Energy, Danceability, Valence tend to be higher for liked songs
  • Acousticness and Instrumentalness higher in disliked songs

βœ… 5. Correlation Matrix

  • Strong positive correlation: energy ↔ loudness
  • Negative correlation: acousticness ↔ energy, valence

βœ… 6. Visual Highlights (Suggested)

  • Boxplots: energy, danceability by liked
  • Countplot: class balance of liked
  • Heatmap: correlation of features
  • Scatter: energy vs valence colored by liked

πŸ€– ML Use Cases

You can use this dataset to train:

  • Logistic Regression
  • Random Forest
  • KNN / SVM
  • ANN / XGBoost / LightGBM
  • Naive Bayes

πŸ“Š Visualizations

1. Boxplot: Energy Distribution by Liked

This shows how energy values are distributed for liked and disliked songs. Energy Boxplot


2. Boxplot: Danceability Distribution by Liked

This shows how danceability varies between liked and disliked songs. Danceability Boxplot


3. Scatter Plot: Energy vs Valence

This plot helps visualize clusters or spread of liked vs disliked songs based on energy and valence. Energy vs Valence


4. Correlation Heatmap

This heatmap shows how all audio features correlate with each other. Correlation Heatmap

5. Countplot: Liked vs Disliked Songs

This chart shows the number of songs in each class: 0 = Disliked, 1 = Liked.
It confirms that the dataset is nearly balanced.

Liked vs Disliked Countplot

πŸ“‰ Statistical Testing

To determine which features are statistically different between liked and disliked songs, a two-sample t-test was performed using:

Feature p-value Significance
danceability 0.0000 βœ… Significant
energy 0.0159 βœ… Significant
key 0.5371 ❌ Not significant
loudness 0.0000 βœ… Significant
mode 0.7418 ❌ Not significant
speechiness 0.0000 βœ… Significant
acousticness 0.0134 βœ… Significant
instrumentalness 0.0000 βœ… Significant
liveness 0.8924 ❌ Not significant
valence 0.0002 βœ… Significant
tempo 0.0000 βœ… Significant
duration_ms 0.0000 βœ… Significant
time_signature 0.0023 βœ… Significant

πŸ” Observation: - Features with p-value > 0.05 are statistically insignificant

- These features do not show a meaningful difference between liked and disliked songs

- We can safely remove the following features:
    liveness
    mode
    key

βœ… This simplifies the dataset and improves model performance by removing noise.

πŸ“ˆ Model Accuracy Comparison

Bar chart showing accuracy of different models used in the project.

Model Accuracy Chart

Downloads last month
34