|
|
from causvid.data import ODERegressionDataset, ODERegressionLMDBDataset |
|
|
from causvid.ode_regression import ODERegression |
|
|
from causvid.models import get_block_class |
|
|
from collections import defaultdict |
|
|
from causvid.util import ( |
|
|
launch_distributed_job, |
|
|
set_seed, init_logging_folder, |
|
|
fsdp_wrap, cycle, |
|
|
fsdp_state_dict, |
|
|
barrier |
|
|
) |
|
|
import torch.distributed as dist |
|
|
from omegaconf import OmegaConf |
|
|
import argparse |
|
|
import torch |
|
|
import wandb |
|
|
import time |
|
|
import os |
|
|
|
|
|
|
|
|
class Trainer: |
|
|
def __init__(self, config): |
|
|
self.config = config |
|
|
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True |
|
|
torch.backends.cudnn.allow_tf32 = True |
|
|
|
|
|
launch_distributed_job() |
|
|
global_rank = dist.get_rank() |
|
|
self.world_size = dist.get_world_size() |
|
|
|
|
|
self.dtype = torch.bfloat16 if config.mixed_precision else torch.float32 |
|
|
self.device = torch.cuda.current_device() |
|
|
self.is_main_process = global_rank == 0 |
|
|
|
|
|
|
|
|
if config.seed == 0: |
|
|
random_seed = torch.randint(0, 10000000, (1,), device=self.device) |
|
|
dist.broadcast(random_seed, src=0) |
|
|
config.seed = random_seed.item() |
|
|
|
|
|
set_seed(config.seed + global_rank) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if config.distillation_loss == "ode": |
|
|
self.distillation_model = ODERegression(config, device=self.device) |
|
|
else: |
|
|
raise ValueError("Invalid distillation loss type") |
|
|
|
|
|
self.distillation_model.generator = fsdp_wrap( |
|
|
self.distillation_model.generator, |
|
|
sharding_strategy=config.sharding_strategy, |
|
|
mixed_precision=config.mixed_precision, |
|
|
wrap_strategy=config.generator_fsdp_wrap_strategy, |
|
|
transformer_module=(get_block_class(config.generator_fsdp_transformer_module), |
|
|
) if config.generator_fsdp_wrap_strategy == "transformer" else None |
|
|
) |
|
|
self.distillation_model.text_encoder = fsdp_wrap( |
|
|
self.distillation_model.text_encoder, |
|
|
sharding_strategy=config.sharding_strategy, |
|
|
mixed_precision=config.mixed_precision, |
|
|
wrap_strategy=config.text_encoder_fsdp_wrap_strategy, |
|
|
transformer_module=(get_block_class(config.text_encoder_fsdp_transformer_module), |
|
|
) if config.text_encoder_fsdp_wrap_strategy == "transformer" else None |
|
|
) |
|
|
|
|
|
self.generator_optimizer = torch.optim.AdamW( |
|
|
[param for param in self.distillation_model.generator.parameters() |
|
|
if param.requires_grad], |
|
|
lr=config.lr, |
|
|
betas=(config.beta1, config.beta2) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
dataset = ODERegressionLMDBDataset( |
|
|
config.data_path, max_pair=getattr(config, "max_pair", int(1e8))) |
|
|
sampler = torch.utils.data.distributed.DistributedSampler( |
|
|
dataset, shuffle=True, drop_last=True) |
|
|
dataloader = torch.utils.data.DataLoader( |
|
|
dataset, batch_size=config.batch_size, sampler=sampler, num_workers=8) |
|
|
self.dataloader = cycle(dataloader) |
|
|
|
|
|
self.step = 0 |
|
|
self.max_grad_norm = 10.0 |
|
|
self.previous_time = None |
|
|
|
|
|
def save(self): |
|
|
print("Start gathering distributed model states...") |
|
|
generator_state_dict = fsdp_state_dict( |
|
|
self.distillation_model.generator) |
|
|
state_dict = { |
|
|
"generator": generator_state_dict |
|
|
} |
|
|
|
|
|
if self.is_main_process: |
|
|
os.makedirs(os.path.join(self.output_path, |
|
|
f"checkpoint_model_{self.step:06d}"), exist_ok=True) |
|
|
torch.save(state_dict, os.path.join(self.output_path, |
|
|
f"checkpoint_model_{self.step:06d}", "model.pt")) |
|
|
print("Model saved to", os.path.join(self.output_path, |
|
|
f"checkpoint_model_{self.step:06d}", "model.pt")) |
|
|
|
|
|
def train_one_step(self): |
|
|
self.distillation_model.eval() |
|
|
|
|
|
|
|
|
batch = next(self.dataloader) |
|
|
text_prompts = batch["prompts"] |
|
|
ode_latent = batch["ode_latent"].to( |
|
|
device=self.device, dtype=self.dtype) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
conditional_dict = self.distillation_model.text_encoder( |
|
|
text_prompts=text_prompts) |
|
|
|
|
|
|
|
|
generator_loss, log_dict = self.distillation_model.generator_loss( |
|
|
ode_latent=ode_latent, |
|
|
conditional_dict=conditional_dict |
|
|
) |
|
|
|
|
|
unnormalized_loss = log_dict["unnormalized_loss"] |
|
|
timestep = log_dict["timestep"] |
|
|
|
|
|
if self.world_size > 1: |
|
|
gathered_unnormalized_loss = torch.zeros( |
|
|
[self.world_size, *unnormalized_loss.shape], |
|
|
dtype=unnormalized_loss.dtype, device=self.device) |
|
|
gathered_timestep = torch.zeros( |
|
|
[self.world_size, *timestep.shape], |
|
|
dtype=timestep.dtype, device=self.device) |
|
|
|
|
|
dist.all_gather_into_tensor( |
|
|
gathered_unnormalized_loss, unnormalized_loss) |
|
|
dist.all_gather_into_tensor(gathered_timestep, timestep) |
|
|
else: |
|
|
gathered_unnormalized_loss = unnormalized_loss |
|
|
gathered_timestep = timestep |
|
|
|
|
|
loss_breakdown = defaultdict(list) |
|
|
stats = {} |
|
|
|
|
|
for index, t in enumerate(timestep): |
|
|
loss_breakdown[str(int(t.item()) // 250 * 250)].append( |
|
|
unnormalized_loss[index].item()) |
|
|
|
|
|
for key_t in loss_breakdown.keys(): |
|
|
stats["loss_at_time_" + key_t] = sum(loss_breakdown[key_t]) / \ |
|
|
len(loss_breakdown[key_t]) |
|
|
|
|
|
self.generator_optimizer.zero_grad() |
|
|
generator_loss.backward() |
|
|
generator_grad_norm = self.distillation_model.generator.clip_grad_norm_( |
|
|
self.max_grad_norm) |
|
|
self.generator_optimizer.step() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(self): |
|
|
while True: |
|
|
self.train_one_step() |
|
|
if (not self.config.no_save) and self.step % self.config.log_iters == 0: |
|
|
self.save() |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
barrier() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.step += 1 |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--config_path", type=str, required=True) |
|
|
parser.add_argument("--local_rank", type=int, default=-1) |
|
|
parser.add_argument("--no_save", action="store_true") |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
config = OmegaConf.load(args.config_path) |
|
|
config.no_save = args.no_save |
|
|
|
|
|
trainer = Trainer(config) |
|
|
trainer.train() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|