|
|
import pandas as pd |
|
|
import cv2 |
|
|
import os |
|
|
from pathlib import Path |
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed |
|
|
from threading import Lock |
|
|
import time |
|
|
import ffmpeg |
|
|
|
|
|
class VideoProcessor: |
|
|
def __init__(self, max_workers=4): |
|
|
self.max_workers = max_workers |
|
|
self.progress_lock = Lock() |
|
|
self.processed_count = 0 |
|
|
self.total_count = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_video_properties(self, video_path): |
|
|
try: |
|
|
probe = ffmpeg.probe(video_path) |
|
|
video_stream = next((stream for stream in probe['streams'] |
|
|
if stream['codec_type'] == 'video'), None) |
|
|
|
|
|
if not video_stream: |
|
|
return None, None, None, None |
|
|
|
|
|
width = int(video_stream['width']) |
|
|
height = int(video_stream['height']) |
|
|
fps = eval(video_stream['r_frame_rate']) |
|
|
|
|
|
if 'nb_frames' in video_stream: |
|
|
num_frames = int(video_stream['nb_frames']) |
|
|
else: |
|
|
duration = float(probe['format']['duration']) |
|
|
num_frames = int(duration * fps) |
|
|
|
|
|
return num_frames, height, width, fps |
|
|
|
|
|
except Exception as e: |
|
|
print(f"读取视频 {video_path} 时出错: {str(e)}") |
|
|
return None, None, None, None |
|
|
|
|
|
def process_single_video(self, args): |
|
|
""" |
|
|
处理单个视频文件 |
|
|
|
|
|
Args: |
|
|
args: (idx, video_file, video_dir) |
|
|
|
|
|
Returns: |
|
|
tuple: (idx, num_frame, height, width, fps, success, message) |
|
|
""" |
|
|
idx, video_file, video_dir = args |
|
|
video_path = os.path.join(video_dir, video_file) |
|
|
|
|
|
|
|
|
if not os.path.exists(video_path): |
|
|
message = f"视频文件不存在: {video_path}" |
|
|
return idx, None, None, None, None, False, message |
|
|
|
|
|
|
|
|
num_frame, height, width, fps = self.get_video_properties(video_path) |
|
|
|
|
|
|
|
|
with self.progress_lock: |
|
|
self.processed_count += 1 |
|
|
progress = (self.processed_count / self.total_count) * 100 |
|
|
|
|
|
if height is not None: |
|
|
message = f"[{self.processed_count}/{self.total_count}] ({progress:.1f}%) {video_file} → {num_frame}, {width}x{height}, {fps:.2f}fps" |
|
|
success = True |
|
|
fps = round(fps, 2) |
|
|
else: |
|
|
message = f"[{self.processed_count}/{self.total_count}] ({progress:.1f}%) {video_file} → 获取信息失败" |
|
|
success = False |
|
|
|
|
|
print(message) |
|
|
|
|
|
return idx, num_frame, height, width, fps, success, message |
|
|
|
|
|
def process_video_csv(self, csv_path, video_dir="./", output_csv_path=None, max_workers=None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if max_workers is None: |
|
|
max_workers = self.max_workers |
|
|
|
|
|
|
|
|
|
|
|
df = pd.read_csv(csv_path) |
|
|
self.total_count = len(df) |
|
|
self.processed_count = 0 |
|
|
|
|
|
print(f"成功读取CSV文件,共 {len(df)} 行数据") |
|
|
print(f"使用 {max_workers} 个线程进行处理...") |
|
|
|
|
|
|
|
|
df['new_num_frame'] = None |
|
|
df['new_height'] = None |
|
|
df['new_width'] = None |
|
|
df['new_fps'] = None |
|
|
|
|
|
|
|
|
tasks = [(idx, row['video path'], video_dir) for idx, row in df.iterrows()] |
|
|
|
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
|
|
|
with ThreadPoolExecutor(max_workers=max_workers) as executor: |
|
|
|
|
|
future_to_task = {executor.submit(self.process_single_video, task): task for task in tasks} |
|
|
|
|
|
|
|
|
for future in as_completed(future_to_task): |
|
|
idx, num_frame, height, width, fps, success, message = future.result() |
|
|
|
|
|
|
|
|
if success and height is not None: |
|
|
df.at[idx, 'new_num_frame'] = num_frame |
|
|
df.at[idx, 'new_height'] = height |
|
|
df.at[idx, 'new_width'] = width |
|
|
df.at[idx, 'new_fps'] = fps |
|
|
|
|
|
|
|
|
end_time = time.time() |
|
|
processing_time = end_time - start_time |
|
|
|
|
|
|
|
|
if output_csv_path is None: |
|
|
output_csv_path = csv_path |
|
|
|
|
|
df.to_csv(output_csv_path, index=False) |
|
|
|
|
|
|
|
|
valid_videos = df['new_height'].notna().sum() |
|
|
print(f"\n{'='*60}") |
|
|
print(f"处理完成!") |
|
|
print(f"总处理时间: {processing_time:.2f}秒") |
|
|
print(f"平均每个视频: {processing_time/len(df):.2f}秒") |
|
|
print(f"成功处理视频数量: {valid_videos}/{len(df)}") |
|
|
print(f"结果已保存到: {output_csv_path}") |
|
|
print(f"{'='*60}") |
|
|
|
|
|
return df |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def process_video_csv_multithread(csv_path, video_dir="./", output_csv_path=None, max_workers=4): |
|
|
""" |
|
|
便捷的多线程视频处理函数 |
|
|
|
|
|
Args: |
|
|
csv_path (str): 输入CSV文件路径 |
|
|
video_dir (str): 视频文件所在目录 |
|
|
output_csv_path (str): 输出CSV文件路径 |
|
|
max_workers (int): 最大线程数 |
|
|
""" |
|
|
processor = VideoProcessor(max_workers=max_workers) |
|
|
return processor.process_video_csv(csv_path, video_dir, output_csv_path, max_workers) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
base_names = ["sekai-game-walking-386"] |
|
|
|
|
|
for base_name in base_names: |
|
|
csv_file_path = f"/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final/data/train/SpatialVID_HQ_metadata.csv" |
|
|
video_directory = f"/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final" |
|
|
output_file_path = f"/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final/data/SpatialVID_HQ_step0.csv" |
|
|
thread_count = 192 |
|
|
|
|
|
|
|
|
result_df = process_video_csv_multithread( |
|
|
csv_path=csv_file_path, |
|
|
video_dir=video_directory, |
|
|
output_csv_path=output_file_path, |
|
|
max_workers=thread_count |
|
|
) |
|
|
|
|
|
|
|
|
""" |
|
|
processor = VideoProcessor(max_workers=thread_count) |
|
|
result_df = processor.process_video_csv( |
|
|
csv_path=csv_file_path, |
|
|
video_dir=video_directory, |
|
|
output_csv_path=output_file_path |
|
|
) |
|
|
""" |
|
|
|
|
|
|
|
|
if result_df is not None: |
|
|
print("\n处理后的数据预览:") |
|
|
print(result_df[['videoFile', 'new_num_frame', 'new_height', 'new_width', 'new_fps']].head()) |
|
|
|
|
|
|
|
|
print(f"\n视频分辨率统计:") |
|
|
resolution_stats = result_df.groupby(['new_width', 'new_height']).size().reset_index(name='count') |
|
|
print(resolution_stats.head(10)) |
|
|
|