File size: 9,408 Bytes
e051419
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
import pandas as pd
import cv2
import os
from pathlib import Path
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Lock
import time
import ffmpeg

class VideoProcessor:
    def __init__(self, max_workers=4):
        self.max_workers = max_workers
        self.progress_lock = Lock()
        self.processed_count = 0
        self.total_count = 0
        
    # def get_video_properties(self, video_path):
    #     """
    #     获取视频的基本属性:高度、宽度、帧率
        
    #     Args:
    #         video_path (str): 视频文件路径
        
    #     Returns:
    #         tuple: (height, width, fps) 或 (None, None, None) 如果读取失败
    #     """
    #     try:
    #         # 打开视频文件
    #         cap = cv2.VideoCapture(video_path)
            
    #         if not cap.isOpened():
    #             return None, None, None
            
    #         # 获取视频属性
    #         num_frame = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    #         width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    #         height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    #         fps = cap.get(cv2.CAP_PROP_FPS)
            
    #         # 释放视频捕获对象
    #         cap.release()
            
    #         return num_frame, height, width, fps
        
    #     except Exception as e:
    #         print(f"读取视频 {video_path} 时出错: {str(e)}")
    #         return None, None, None
    
    def get_video_properties(self, video_path):
        try:
            probe = ffmpeg.probe(video_path)
            video_stream = next((stream for stream in probe['streams'] 
                            if stream['codec_type'] == 'video'), None)
            
            if not video_stream:
                return None, None, None, None
                
            width = int(video_stream['width'])
            height = int(video_stream['height'])
            fps = eval(video_stream['r_frame_rate'])
            
            if 'nb_frames' in video_stream:
                num_frames = int(video_stream['nb_frames'])
            else:
                duration = float(probe['format']['duration'])
                num_frames = int(duration * fps)

            return num_frames, height, width, fps
            
        except Exception as e:
            print(f"读取视频 {video_path} 时出错: {str(e)}")
            return None, None, None, None

    def process_single_video(self, args):
        """
        处理单个视频文件
        
        Args:
            args: (idx, video_file, video_dir)
        
        Returns:
            tuple: (idx, num_frame, height, width, fps, success, message)
        """
        idx, video_file, video_dir = args
        video_path = os.path.join(video_dir, video_file)
        
        # 检查视频文件是否存在
        if not os.path.exists(video_path):
            message = f"视频文件不存在: {video_path}"
            return idx, None, None, None, None, False, message

        # 获取视频属性
        num_frame, height, width, fps = self.get_video_properties(video_path)
        
        # 更新进度
        with self.progress_lock:
            self.processed_count += 1
            progress = (self.processed_count / self.total_count) * 100
            
            if height is not None:
                message = f"[{self.processed_count}/{self.total_count}] ({progress:.1f}%) {video_file}{num_frame}, {width}x{height}, {fps:.2f}fps"
                success = True
                fps = round(fps, 2)
            else:
                message = f"[{self.processed_count}/{self.total_count}] ({progress:.1f}%) {video_file} → 获取信息失败"
                success = False
            
            print(message)
        
        return idx, num_frame, height, width, fps, success, message
    
    def process_video_csv(self, csv_path, video_dir="./", output_csv_path=None, max_workers=None):
        # """
        # 多线程处理CSV文件,添加视频的height、width、fps信息
        
        # Args:
        #     csv_path (str): 输入CSV文件路径
        #     video_dir (str): 视频文件所在目录
        #     output_csv_path (str): 输出CSV文件路径,如果为None则覆盖原文件
        #     max_workers (int): 最大线程数,如果为None则使用初始化时的值
        # """
            if max_workers is None:
                max_workers = self.max_workers
        
        # try:
            # 读取CSV文件
            df = pd.read_csv(csv_path)
            self.total_count = len(df)
            self.processed_count = 0
            
            print(f"成功读取CSV文件,共 {len(df)} 行数据")
            print(f"使用 {max_workers} 个线程进行处理...")
            
            # 初始化新列
            df['new_num_frame'] = None
            df['new_height'] = None
            df['new_width'] = None
            df['new_fps'] = None
            
            # 准备任务列表
            tasks = [(idx, row['video path'], video_dir) for idx, row in df.iterrows()]
            
            # 记录开始时间
            start_time = time.time()
            
            # 使用线程池执行任务
            with ThreadPoolExecutor(max_workers=max_workers) as executor:
                # 提交所有任务
                future_to_task = {executor.submit(self.process_single_video, task): task for task in tasks}
                
                # 处理完成的任务
                for future in as_completed(future_to_task):
                    idx, num_frame, height, width, fps, success, message = future.result()
                    
                    # 更新DataFrame
                    if success and height is not None:                        
                        df.at[idx, 'new_num_frame'] = num_frame
                        df.at[idx, 'new_height'] = height
                        df.at[idx, 'new_width'] = width
                        df.at[idx, 'new_fps'] = fps
            
            # 计算处理时间
            end_time = time.time()
            processing_time = end_time - start_time
            
            # 保存结果
            if output_csv_path is None:
                output_csv_path = csv_path
            
            df.to_csv(output_csv_path, index=False)
            
            # 显示统计信息
            valid_videos = df['new_height'].notna().sum()
            print(f"\n{'='*60}")
            print(f"处理完成!")
            print(f"总处理时间: {processing_time:.2f}秒")
            print(f"平均每个视频: {processing_time/len(df):.2f}秒")
            print(f"成功处理视频数量: {valid_videos}/{len(df)}")
            print(f"结果已保存到: {output_csv_path}")
            print(f"{'='*60}")
            
            return df
        
        # except Exception as e:
        #     print(f"处理过程中出错: {str(e)}")
        #     return None

# 便捷函数
def process_video_csv_multithread(csv_path, video_dir="./", output_csv_path=None, max_workers=4):
    """
    便捷的多线程视频处理函数
    
    Args:
        csv_path (str): 输入CSV文件路径
        video_dir (str): 视频文件所在目录
        output_csv_path (str): 输出CSV文件路径
        max_workers (int): 最大线程数
    """
    processor = VideoProcessor(max_workers=max_workers)
    return processor.process_video_csv(csv_path, video_dir, output_csv_path, max_workers)

# 使用示例
if __name__ == "__main__":
    # 配置参数
    # base_names = ["sekai-real-walking-hq-193", "sekai-game-walking-193", "sekai-real-walking-hq-386", "sekai-game-walking-386"]
    # base_names = ["sekai-real-walking-hq-193"]
    # base_names = ["sekai-game-walking-193"]
    # base_names = ["sekai-real-walking-hq-386"]
    base_names = ["sekai-game-walking-386"]

    for base_name in base_names:
        csv_file_path = f"/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final/data/train/SpatialVID_HQ_metadata.csv"
        video_directory = f"/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final"
        output_file_path = f"/mnt/bn/yufan-dev-my/ysh/Ckpts/SpatialVID/SpatialVID-HQ-Final/data/SpatialVID_HQ_step0.csv"
        thread_count = 192
        
        # 方法1: 使用便捷函数
        result_df = process_video_csv_multithread(
            csv_path=csv_file_path,
            video_dir=video_directory,
            output_csv_path=output_file_path,
            max_workers=thread_count
        )
        
        # 方法2: 使用类的方式(更灵活)
        """
        processor = VideoProcessor(max_workers=thread_count)
        result_df = processor.process_video_csv(
            csv_path=csv_file_path,
            video_dir=video_directory,
            output_csv_path=output_file_path
        )
        """
        
        # 显示前几行结果
        if result_df is not None:
            print("\n处理后的数据预览:")
            print(result_df[['videoFile', 'new_num_frame', 'new_height', 'new_width', 'new_fps']].head())
            
            # 显示一些统计信息
            print(f"\n视频分辨率统计:")
            resolution_stats = result_df.groupby(['new_width', 'new_height']).size().reset_index(name='count')
            print(resolution_stats.head(10))