File size: 12,510 Bytes
fff3baa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
from causvid.data import ODERegressionLMDBDataset
from causvid.models import get_block_class
from causvid.data import TextDataset
from causvid.util import (
    launch_distributed_job,
    prepare_for_saving,
    set_seed, init_logging_folder,
    fsdp_wrap, cycle,
    fsdp_state_dict,
    barrier
)
import torch.distributed as dist
from omegaconf import OmegaConf
from causvid.dmd import DMD
import argparse
import torch
import wandb
import time
import os


class Trainer:
    def __init__(self, config):
        self.config = config

        # Step 1: Initialize the distributed training environment (rank, seed, dtype, logging etc.)
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True

        launch_distributed_job()
        global_rank = dist.get_rank()

        self.dtype = torch.bfloat16 if config.mixed_precision else torch.float32
        self.device = torch.cuda.current_device()
        self.is_main_process = global_rank == 0

        # use a random seed for the training
        if config.seed == 0:
            random_seed = torch.randint(0, 10000000, (1,), device=self.device)
            dist.broadcast(random_seed, src=0)
            config.seed = random_seed.item()

        set_seed(config.seed + global_rank)

        if self.is_main_process:
            # self.output_path, self.wandb_folder = init_logging_folder(config)
            self.output_path, self.wandb_folder = "output", "output_wandb"

        # Step 2: Initialize the model and optimizer
        if config.distillation_loss == "dmd":
            self.distillation_model = DMD(config, device=self.device)
        else:
            raise ValueError("Invalid distillation loss type")

        self.distillation_model.generator = fsdp_wrap(
            self.distillation_model.generator,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.generator_fsdp_wrap_strategy,
            transformer_module=(get_block_class(config.generator_fsdp_transformer_module),
                                ) if config.generator_fsdp_wrap_strategy == "transformer" else None
        )

        self.distillation_model.real_score = fsdp_wrap(
            self.distillation_model.real_score,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.real_score_fsdp_wrap_strategy,
            transformer_module=(get_block_class(config.real_score_fsdp_transformer_module),
                                ) if config.real_score_fsdp_wrap_strategy == "transformer" else None
        )

        self.distillation_model.fake_score = fsdp_wrap(
            self.distillation_model.fake_score,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.fake_score_fsdp_wrap_strategy,
            transformer_module=(get_block_class(config.fake_score_fsdp_transformer_module),
                                ) if config.fake_score_fsdp_wrap_strategy == "transformer" else None
        )

        self.distillation_model.text_encoder = fsdp_wrap(
            self.distillation_model.text_encoder,
            sharding_strategy=config.sharding_strategy,
            mixed_precision=config.mixed_precision,
            wrap_strategy=config.text_encoder_fsdp_wrap_strategy,
            transformer_module=(get_block_class(config.text_encoder_fsdp_transformer_module),
                                ) if config.text_encoder_fsdp_wrap_strategy == "transformer" else None
        )

        if not config.no_visualize:
            self.distillation_model.vae = self.distillation_model.vae.to(
                device=self.device, dtype=torch.bfloat16 if config.mixed_precision else torch.float32)

        self.generator_optimizer = torch.optim.AdamW(
            [param for param in self.distillation_model.generator.parameters()
             if param.requires_grad],
            lr=config.lr,
            betas=(config.beta1, config.beta2)
        )

        self.critic_optimizer = torch.optim.AdamW(
            [param for param in self.distillation_model.fake_score.parameters()
             if param.requires_grad],
            lr=config.lr,
            betas=(config.beta1, config.beta2)
        )

        # Step 3: Initialize the dataloader

        self.backward_simulation = getattr(config, "backward_simulation", True)

        if self.backward_simulation:
            dataset = TextDataset(config.data_path)
        else:
            dataset = ODERegressionLMDBDataset(
                config.data_path, max_pair=int(1e8))
        sampler = torch.utils.data.distributed.DistributedSampler(
            dataset, shuffle=True, drop_last=True)
        dataloader = torch.utils.data.DataLoader(
            dataset, batch_size=config.batch_size, sampler=sampler)
        self.dataloader = cycle(dataloader)

        self.step = 0
        self.max_grad_norm = 10.0
        self.previous_time = None

    def save(self):
        print("Start gathering distributed model states...")
        generator_state_dict = fsdp_state_dict(
            self.distillation_model.generator)
        critic_state_dict = fsdp_state_dict(
            self.distillation_model.fake_score)
        state_dict = {
            "generator": generator_state_dict,
            "critic": critic_state_dict
        }

        if self.is_main_process:
            os.makedirs(os.path.join(self.output_path,
                        f"checkpoint_model_{self.step:06d}"), exist_ok=True)
            torch.save(state_dict, os.path.join(self.output_path,
                       f"checkpoint_model_{self.step:06d}", "model.pt"))
            print("Model saved to", os.path.join(self.output_path,
                  f"checkpoint_model_{self.step:06d}", "model.pt"))

    def train_one_step(self):
        self.distillation_model.eval()  # prevent any randomness (e.g. dropout)

        TRAIN_GENERATOR = self.step % self.config.dfake_gen_update_ratio == 0
        VISUALIZE = self.step % self.config.log_iters == 0 and not self.config.no_visualize

        if self.step % 20 == 0:
            torch.cuda.empty_cache()

        # Step 1: Get the next batch of text prompts
        if not self.backward_simulation:
            batch = next(self.dataloader)
            text_prompts = batch["prompts"]
            clean_latent = batch["ode_latent"][:, -1].to(
                device=self.device, dtype=self.dtype)
        else:
            text_prompts = next(self.dataloader)
            clean_latent = None

        batch_size = len(text_prompts)
        image_or_video_shape = list(self.config.image_or_video_shape)
        image_or_video_shape[0] = batch_size

        # Step 2: Extract the conditional infos
        with torch.no_grad():
            conditional_dict = self.distillation_model.text_encoder(
                text_prompts=text_prompts)

            if not getattr(self, "unconditional_dict", None):
                unconditional_dict = self.distillation_model.text_encoder(
                    text_prompts=[self.config.negative_prompt] * batch_size)
                unconditional_dict = {k: v.detach()
                                      for k, v in unconditional_dict.items()}
                self.unconditional_dict = unconditional_dict  # cache the unconditional_dict
            else:
                unconditional_dict = self.unconditional_dict

        # Step 3: Train the generator
        if TRAIN_GENERATOR:
            generator_loss, generator_log_dict = self.distillation_model.generator_loss(
                image_or_video_shape=image_or_video_shape,
                conditional_dict=conditional_dict,
                unconditional_dict=unconditional_dict,
                clean_latent=clean_latent
            )

            self.generator_optimizer.zero_grad()
            generator_loss.backward()
            generator_grad_norm = self.distillation_model.generator.clip_grad_norm_(
                self.max_grad_norm)
            self.generator_optimizer.step()
        else:
            generator_log_dict = {}

        # Step 4: Train the critic
        critic_loss, critic_log_dict = self.distillation_model.critic_loss(
            image_or_video_shape=image_or_video_shape,
            conditional_dict=conditional_dict,
            unconditional_dict=unconditional_dict,
            clean_latent=clean_latent
        )

        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        critic_grad_norm = self.distillation_model.fake_score.clip_grad_norm_(
            self.max_grad_norm)
        self.critic_optimizer.step()

        # Step 5: Logging
        # if self.is_main_process:
        #     wandb_loss_dict = {
        #         "critic_loss": critic_loss.item(),
        #         "critic_grad_norm": critic_grad_norm.item()
        #     }

        #     if TRAIN_GENERATOR:
        #         wandb_loss_dict.update(
        #             {
        #                 "generator_loss": generator_loss.item(),
        #                 "generator_grad_norm": generator_grad_norm.item(),
        #                 "dmdtrain_gradient_norm": generator_log_dict["dmdtrain_gradient_norm"].item()
        #             }
        #         )

        #     if VISUALIZE:
        #         self.add_visualization(generator_log_dict, critic_log_dict, wandb_loss_dict)

        #     wandb.log(wandb_loss_dict, step=self.step)

    # def add_visualization(self, generator_log_dict, critic_log_dict, wandb_loss_dict):
    #     critictrain_latent, critictrain_noisy_latent, critictrain_pred_image = map(
    #         lambda x: self.distillation_model.vae.decode_to_pixel(
    #             x).squeeze(1),
    #         [critic_log_dict['critictrain_latent'], critic_log_dict['critictrain_noisy_latent'],
    #             critic_log_dict['critictrain_pred_image']]
    #     )

    #     wandb_loss_dict.update({
    #         "critictrain_latent": prepare_for_saving(critictrain_latent),
    #         "critictrain_noisy_latent": prepare_for_saving(critictrain_noisy_latent),
    #         "critictrain_pred_image": prepare_for_saving(critictrain_pred_image)
    #     })

    #     if "dmdtrain_clean_latent" in generator_log_dict:
    #         (dmdtrain_clean_latent, dmdtrain_noisy_latent, dmdtrain_pred_real_image, dmdtrain_pred_fake_image) = map(
    #             lambda x: self.distillation_model.vae.decode_to_pixel(
    #                 x).squeeze(1),
    #             [generator_log_dict['dmdtrain_clean_latent'], generator_log_dict['dmdtrain_noisy_latent'],
    #                 generator_log_dict['dmdtrain_pred_real_image'], generator_log_dict['dmdtrain_pred_fake_image']]
    #         )

    #         wandb_loss_dict.update(
    #             {
    #                 "dmdtrain_clean_latent": prepare_for_saving(dmdtrain_clean_latent),
    #                 "dmdtrain_noisy_latent": prepare_for_saving(dmdtrain_noisy_latent),
    #                 "dmdtrain_pred_real_image": prepare_for_saving(dmdtrain_pred_real_image),
    #                 "dmdtrain_pred_fake_image": prepare_for_saving(dmdtrain_pred_fake_image)
    #             }
    #         )

    def train(self):
        while True:
            self.train_one_step()
            if (not self.config.no_save) and self.step % self.config.log_iters == 0:
                self.save()
                torch.cuda.empty_cache()

            barrier()
            if self.is_main_process:
                current_time = time.time()
                if self.previous_time is None:
                    self.previous_time = current_time
                else:
                    # wandb.log({"per iteration time": current_time -
                    #           self.previous_time}, step=self.step)
                    self.previous_time = current_time

            self.step += 1


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--config_path", type=str, required=True)
    parser.add_argument("--local_rank", type=int, default=-1)
    parser.add_argument("--no_save", action="store_true")
    parser.add_argument("--no_visualize", action="store_true")

    args = parser.parse_args()

    config = OmegaConf.load(args.config_path)
    config.no_save = args.no_save
    config.no_visualize = args.no_visualize

    trainer = Trainer(config)
    trainer.train()

    # wandb.finish()


if __name__ == "__main__":
    main()