Dataset Viewer (First 5GB)
Auto-converted to Parquet Duplicate
keyword
stringclasses
7 values
repo_name
stringlengths
8
98
file_path
stringlengths
4
244
file_extension
stringclasses
29 values
file_size
int64
0
84.1M
line_count
int64
0
1.6M
content
stringlengths
1
84.1M
language
stringclasses
14 values
2D
shigemorita/2Dpy
contour.py
.py
2,436
70
import numpy import pandas from matplotlib import pyplot from matplotlib import ticker data_file = "contour.csv" num_contour = 16 pyplot.rcParams["axes.linewidth"] = 1.5 pyplot.rcParams["figure.dpi"] = 100 pyplot.rcParams["figure.figsize"] = (4, 4) pyplot.rcParams["font.family"] = "serif" pyplot.rcParams["font.size"] = 16 pyplot.rcParams["xtick.major.width"] = 1.5 pyplot.rcParams["ytick.major.width"] = 1.5 pyplot.rcParams["xtick.minor.width"] = 1.5 pyplot.rcParams["ytick.minor.width"] = 1.5 pyplot.rcParams["xtick.major.size"] = 6 pyplot.rcParams["ytick.major.size"] = 6 pyplot.rcParams["xtick.minor.size"] = 3 pyplot.rcParams["ytick.minor.size"] = 3 pyplot.rcParams["axes.labelpad"] = 15 pyplot.rcParams["xtick.major.pad"] = 18 pyplot.rcParams["ytick.major.pad"] = 18 pyplot.rcParams["xtick.top"] = True pyplot.rcParams["ytick.right"] = True pyplot.rcParams["xtick.direction"] = "in" pyplot.rcParams["ytick.direction"] = "in" data = pandas.read_csv(data_file, header=0, index_col=0) x = data.columns[0:].astype(float) y = data.index[0:].astype(float) z = data.values zmax = numpy.absolute(z).max() fig = pyplot.figure() ax = fig.add_subplot(1, 1, 1) ax.contour(x, y, z, num_contour, cmap="bwr", vmin=-1 * zmax, vmax=zmax) ax.set_xlim(1200, 1000) ax.set_xticks(numpy.arange(1200, 1000 - 1, -50)) ax.xaxis.set_minor_locator(ticker.MultipleLocator(10)) ax.set_ylim(1200, 1000) ax.set_yticks(numpy.arange(1200, 1000 - 1, -50)) ax.yaxis.set_minor_locator(ticker.MultipleLocator(10)) ax.set_title("Synchronous") ax.set_xlabel(r"$\nu$${_{1}}$ / cm${^{-1}}$") ax.set_ylabel(r"$\nu$${_{2}}$ / cm${^{-1}}$") pyplot.savefig("contour.png", dpi=200, bbox_inches="tight") fig = pyplot.figure() ax = fig.add_subplot(1, 1, 1) ax.contour(x, y, z, num_contour, cmap="bwr", vmin=-1 * zmax, vmax=zmax) fig = pyplot.figure() ax = fig.add_subplot(1, 1, 1) ax.pcolormesh(x, y, z, cmap="bwr", vmin=-1 * zmax, vmax=zmax) fig = pyplot.figure() ax = fig.add_subplot(1, 1, 1) ax.contour(x, y, z, num_contour, colors="black", linewidths=0.5, linestyles="solid", vmin=-1 * zmax, vmax=zmax) ax.pcolormesh(x, y, z, cmap="jet", vmin=-1 * zmax, vmax=zmax) fig = pyplot.figure() ax = fig.add_subplot(1, 1, 1) ax.contour(x, y, z, num_contour, colors="black", linewidths=0.5, vmin=-1 * zmax, vmax=zmax) ax.contourf(x, y, z, levels=0, colors=["gray", "white"], vmin=-1 * zmax, vmax=zmax)
Python
2D
shigemorita/2Dpy
2Dpy.py
.py
2,013
68
import math import numpy import pandas from matplotlib import pyplot hetero = False inputfile1 = "spec.csv" # hetero=True # inputfile1="spec1.csv" # inputfile2="spec2.csv" left_large = True dynamic = True num_contour = 16 # file read spec1 = pandas.read_csv(inputfile1, header=0, index_col=0).T if hetero == False: inputfile2 = inputfile1 spec2 = pandas.read_csv(inputfile2, header=0, index_col=0).T if len(spec1) != len(spec2): raise Exception("data mismatching") spec1.T.plot(legend=None) pyplot.show() if left_large: pyplot.xlim(max(spec1.columns), min(spec1.columns)) if hetero: spec2.T.plot(legend=None) if left_large: pyplot.xlim(max(spec2.columns), min(spec2.columns)) pyplot.show() if dynamic: spec1 = spec1 - spec1.mean() spec2 = spec2 - spec2.mean() def contourplot(spec): x = spec.columns[0:].astype(float) y = spec.index[0:].astype(float) z = spec.values zmax = numpy.absolute(z).max() pyplot.figure(figsize=(6, 6)) pyplot.contour(x, y, z, num_contour, cmap="bwr", vmin=-1 * zmax, vmax=zmax) # pyplot.pcolormesh(x,y,z,cmap='jet',vmin=-1*zmax,vmax=zmax) if left_large: pyplot.xlim(max(x), min(x)) pyplot.ylim(max(y), min(y)) pyplot.show() # synchronous correlation sync = pandas.DataFrame(spec1.values.T @ spec2.values / (len(spec1) - 1)) sync.index = spec1.columns sync.columns = spec2.columns sync = sync.T contourplot(sync) sync.to_csv(inputfile1[: len(inputfile1) - 4] + "_sync.csv") # Hilbert-Noda transformation matrix noda = numpy.zeros((len(spec1), len(spec1))) for i in range(len(spec1)): for j in range(len(spec1)): if i != j: noda[i, j] = 1 / math.pi / (j - i) # asynchronouse correlation asyn = pandas.DataFrame(spec1.values.T @ noda @ spec2.values / (len(spec1) - 1)) asyn.index = spec1.columns asyn.columns = spec2.columns asyn = asyn.T contourplot(asyn) asyn.to_csv(inputfile1[: len(inputfile1) - 4] + "_async.csv")
Python
2D
shigemorita/2Dpy
contour.ipynb
.ipynb
4,357
152
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import numpy\n", "import pandas\n", "from matplotlib import pyplot\n", "from matplotlib import ticker" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data_file = \"contour.csv\"\n", "num_contour = 16\n", "pyplot.rcParams[\"axes.linewidth\"] = 1.5\n", "pyplot.rcParams[\"figure.dpi\"] = 100\n", "pyplot.rcParams[\"figure.figsize\"] = (4, 4)\n", "pyplot.rcParams[\"font.family\"] = \"serif\"\n", "pyplot.rcParams[\"font.size\"] = 16\n", "pyplot.rcParams[\"xtick.major.width\"] = 1.5\n", "pyplot.rcParams[\"ytick.major.width\"] = 1.5\n", "pyplot.rcParams[\"xtick.minor.width\"] = 1.5\n", "pyplot.rcParams[\"ytick.minor.width\"] = 1.5\n", "pyplot.rcParams[\"xtick.major.size\"] = 6\n", "pyplot.rcParams[\"ytick.major.size\"] = 6\n", "pyplot.rcParams[\"xtick.minor.size\"] = 3\n", "pyplot.rcParams[\"ytick.minor.size\"] = 3\n", "pyplot.rcParams[\"axes.labelpad\"] = 8\n", "pyplot.rcParams[\"xtick.major.pad\"] = 12\n", "pyplot.rcParams[\"ytick.major.pad\"] = 12\n", "pyplot.rcParams[\"xtick.top\"] = True\n", "pyplot.rcParams[\"ytick.right\"] = True\n", "pyplot.rcParams[\"xtick.direction\"] = \"in\"\n", "pyplot.rcParams[\"ytick.direction\"] = \"in\"" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = pandas.read_csv(data_file, header=0, index_col=0)\n", "x = data.columns[0:].astype(float)\n", "y = data.index[0:].astype(float)\n", "z = data.values\n", "zmax = numpy.absolute(z).max()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = pyplot.figure()\n", "ax = fig.add_subplot(1, 1, 1)\n", "ax.contour(x, y, z, num_contour, cmap=\"bwr\", vmin=-1 * zmax, vmax=zmax)\n", "\n", "ax.set_xlim(1200, 1000)\n", "ax.set_xticks(numpy.arange(1200, 1000 - 1, -50))\n", "ax.xaxis.set_minor_locator(ticker.MultipleLocator(10))\n", "\n", "ax.set_ylim(1200, 1000)\n", "ax.set_yticks(numpy.arange(1200, 1000 - 1, -50))\n", "ax.yaxis.set_minor_locator(ticker.MultipleLocator(10))\n", "\n", "ax.set_title(\"Synchronous\")\n", "ax.set_xlabel(r\"$\\nu$${_{1}}$ / cm${^{-1}}$\")\n", "ax.set_ylabel(r\"$\\nu$${_{2}}$ / cm${^{-1}}$\")\n", "\n", "pyplot.savefig(\"contour.png\", dpi=200, bbox_inches=\"tight\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = pyplot.figure()\n", "ax = fig.add_subplot(1, 1, 1)\n", "ax.contour(x, y, z, num_contour, cmap=\"bwr\", vmin=-1 * zmax, vmax=zmax)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = pyplot.figure()\n", "ax = fig.add_subplot(1, 1, 1)\n", "ax.pcolormesh(x, y, z, cmap=\"bwr\", vmin=-1 * zmax, vmax=zmax)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = pyplot.figure()\n", "ax = fig.add_subplot(1, 1, 1)\n", "ax.contour(x, y, z, num_contour, colors=\"black\", linewidths=0.5, linestyles=\"solid\", vmin=-1 * zmax, vmax=zmax)\n", "ax.pcolormesh(x, y, z, cmap=\"jet\", vmin=-1 * zmax, vmax=zmax)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "fig = pyplot.figure()\n", "ax = fig.add_subplot(1, 1, 1)\n", "ax.contour(x, y, z, num_contour, colors=\"black\", linewidths=0.5, vmin=-1 * zmax, vmax=zmax)\n", "ax.contourf(x, y, z, levels=0, colors=[\"gray\", \"white\"], vmin=-1 * zmax, vmax=zmax)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 2 }
Unknown
2D
shigemorita/2Dpy
2Dpy.ipynb
.ipynb
3,678
141
{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import math\n", "import numpy\n", "import pandas\n", "from matplotlib import pyplot" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "hetero = False\n", "inputfile1 = \"spec.csv\"\n", "\n", "# hetero=True\n", "# inputfile1=\"spec1.csv\"\n", "# inputfile2=\"spec2.csv\"\n", "\n", "left_large = True\n", "dynamic = True\n", "num_contour = 16" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# file read\n", "spec1 = pandas.read_csv(inputfile1, header=0, index_col=0).T\n", "if hetero == False:\n", " inputfile2 = inputfile1\n", "spec2 = pandas.read_csv(inputfile2, header=0, index_col=0).T\n", "if len(spec1) != len(spec2):\n", " raise Exception(\"data mismatching\")\n", "spec1.T.plot(legend=None)\n", "if left_large: pyplot.xlim(max(spec1.columns), min(spec1.columns))\n", "if hetero:\n", " spec2.T.plot(legend=None)\n", " if left_large: pyplot.xlim(max(spec2.columns), min(spec2.columns))\n", "if dynamic:\n", " spec1 = spec1 - spec1.mean()\n", " spec2 = spec2 - spec2.mean()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "def contourplot(spec):\n", " x = spec.columns[0:].astype(float)\n", " y = spec.index[0:].astype(float)\n", " z = spec.values\n", " zmax = numpy.absolute(z).max()\n", " pyplot.figure(figsize=(6, 6))\n", " pyplot.contour(x, y, z, num_contour, cmap=\"bwr\", vmin=-1 * zmax, vmax=zmax)\n", " # pyplot.pcolormesh(x,y,z,cmap='jet',vmin=-1*zmax,vmax=zmax)\n", " if left_large:\n", " pyplot.xlim(max(x), min(x))\n", " pyplot.ylim(max(y), min(y))" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# synchronous correlation\n", "sync = pandas.DataFrame(spec1.values.T @ spec2.values / (len(spec1) - 1))\n", "sync.index = spec1.columns\n", "sync.columns = spec2.columns\n", "sync = sync.T\n", "contourplot(sync)\n", "sync.to_csv(inputfile1[: len(inputfile1) - 4] + \"_sync.csv\")" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Hilbert-Noda transformation matrix\n", "noda = numpy.zeros((len(spec1), len(spec1)))\n", "for i in range(len(spec1)):\n", " for j in range(len(spec1)):\n", " if i != j: noda[i, j] = 1 / math.pi / (j - i)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# asynchronouse correlation\n", "asyn = pandas.DataFrame(spec1.values.T @ noda @ spec2.values / (len(spec1) - 1))\n", "asyn.index = spec1.columns\n", "asyn.columns = spec2.columns\n", "asyn = asyn.T\n", "contourplot(asyn)\n", "asyn.to_csv(inputfile1[: len(inputfile1) - 4] + \"_async.csv\")" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.12" } }, "nbformat": 4, "nbformat_minor": 2 }
Unknown
2D
GiggleLiu/QuantumMPS
resolve_env.jl
.jl
386
20
using Pkg deps = ["Yao", "DelimitedFiles", "FileIO", "Fire", "JLD2", "KrylovKit", "StatsBase"] extras = ["CUDAnative", "CuArrays"] USE_CUDA = !("nocuda" in ARGS) if USE_CUDA deps = vcat(deps, extras) end for x in deps println("Installing $x ...") Pkg.add(x) end if USE_CUDA println("Installing CuYao ...") Pkg.clone("https://github.com/QuantumBFS/CuYao.jl") end
Julia
2D
GiggleLiu/QuantumMPS
j1j2.jl
.jl
2,133
61
include("applications.jl") using Fire @main function sample_cluster() m = model(Val(:cluster); nbit=3, B=10) @show gensample(m, X) end """ julia j1j2.jl train [--symmetry <su2|u1|general>] [--depth <Int>] Train a 4 x 4 frustrated Heisenberg model with J2 = 0.5. Available ansatz symmetries includes `general`, `u1` and `su2`. """ @main function train(;symmetry::Symbol=:su2, depth::Int=5) USE_CUDA || @warn "You are not using GPU (35 x speed up), this training may take life long. Turn on the switch in file `applications.jl` if you have a GPU that supports CUDA!" model = simple_model_j1j2(4, 4) ansatz = simple_ansatz(16, symmetry, depth; load_params=false) run_train(ansatz, model; SAVE_ID=Symbol(symmetry,:_d,depth), niter=500, start_point=0) end """ julia j1j2.jl measure <energy|fidelity|szsz> [--symmetry <su2|u1|general>] [--depth <Int>] Load a pre-trained ansatz for 4 x 4 frustrated Heisenberg model with J2 = 0.5, tasks includes * energy, sample the energy. * szsz, calculate the <sz(i)*sz(j)> correlation matrix. Also, we can obtain some exact quantities in simulation for analysis * fidelity, calculated the exact fidelity * energy_exact, calculated the exact energy Pre-trained ansatz includes * --symmetry su2, --depth <1-5> * --symmetry u1, --depth 5 * --symmetry general, --depth 5 """ @main function measure(task::String; symmetry::Symbol=:su2, depth::Int=5) model = simple_model_j1j2(4, 4) ansatz = simple_ansatz(16, symmetry, depth; load_params=true) nbit = nbit_simulated(ansatz) if task == "energy" eng_sample = energy(ansatz, model)/nbit println("Sampled value of energy/site = $eng_sample") elseif task == "energy_exact" eng = energy_exact(ansatz, model)/nbit println("Exact value of energy/site = $eng") elseif task == "fidelity" gs = ground_state(model) fid = fidelity_exact(ansatz, gs)[] println("Exact value of fidelity = $fid") elseif task == "szsz" correlation_matrix(ansatz; SAVE_ID=symmetry) else throw(ArgumentError("$task is not defined!")) end end
Julia
2D
GiggleLiu/QuantumMPS
applications.jl
.jl
4,101
126
push!(LOAD_PATH, abspath("src")) using Yao using QMPS using DelimitedFiles, JLD2, FileIO, Pkg # CUDA switch const USE_CUDA = haskey(Pkg.installed(), "CuYao") USE_CUDA && println("Hint: Using CUDA since `CuYao` is detected. Edit file `applications.jl` to modify CUDA settings, like switching computing devices.") USE_CUDA && include("CuChem.jl") USE_CUDA && device!(CuDevice(0)) """Heisenberg model without frustration, with open boundary condition.""" simple_model_heis(size...) = Heisenberg(size...; periodic=false) """Heisenberg model with frustration strenth J2 = 0.5, with open boundary condition.""" simple_model_j1j2(size...) = J1J2(size...; periodic=false, J2=0.5) """ simple_ansatz(nbit::Int, symmetry::Symbol, depth::Int; load_params::Bool=false) Load a predefined MPS inspired ansatz with 4 virtual qubits, batch size 4096. If `load_params` is `true`, load parameters in training step 500. """ function simple_ansatz(nbit::Int, symmetry::Symbol, depth::Int; load_params::Bool=false) V = 4 # number of virtual qubits batch_size = 4096 load_step = 500 ansatz = model(Val(symmetry); nbit=nbit, nlayer=depth, V=V, B=batch_size, pairs=pair_ring(V+1)) USE_CUDA && (ansatz = ansatz |> cu) if load_params filename = "data/chem_$(symmetry)_d$(depth)_N$(nbit)_V$(V)_S$(load_step).jld2" params = load_training(filename)[3] println("loading file $filename") println("Number of parameters is ", params |> length) dispatch!(ansatz.circuit, params) end ansatz end """ save_training(filename, qopt::Adam, loss, params, fidelity) Save training status. """ function save_training(filename, qopt::Adam, loss, params, fidelity) save(filename, "qopt", qopt, "loss", loss, "params", params, "fidelity", fidelity) end """ load_training(filename) -> Tuple Load training status (qopt, loss, params, fidelity). """ function load_training(filename) res = load(filename) res["qopt"], res["loss"], res["params"], res["fidelity"] end """ run_train(ansatz, model; SAVE_ID, niter=500, start_point=0, save_step=0) Run a variational quantum eigensolver to solve a `model` Hamiltonian with MPS inspired `ansatz` * SAVE_ID, token used for saving data, * niter, number of training steps, * start_point, load a save point, default is 0 (random parameters). * save_step, save the training every `save_step` steps. """ function run_train(ansatz, model; SAVE_ID, niter::Int=500, start_point::Int=0, save_step::Int=10) nbit = nbit_simulated(ansatz) V = ansatz.nbit_virtual filename(k::Int) = "data/chem_$(SAVE_ID)_N$(nbit)_V$(V)_S$(k).jld2" if start_point==0 optimizer = Adam(lr=0.1) history = Float64[] fidelities = Float64[] else optimizer, history, _params, fidelities = load_training(filename(start_point)) dispatch!(ansatz.circuit, _params) end qo = QMPSOptimizer(ansatz, model, optimizer) gs = ground_state(model) for (k_, p) in enumerate(qo) k = k_ + start_point curr_loss = energy(ansatz, model)/nbit fid = fidelity_exact(ansatz, gs)[] push!(history, curr_loss) push!(fidelities, fid) println("step = $k, energy/site = $curr_loss, fidelity = $(fid)") flush(stdout) if k%save_step == 0 || k == niter save_training(filename(k), qo.optimizer, history, parameters(ansatz.circuit), fidelities) k >= niter && break end end end """ correlation_matrix(ansatz, op; SAVE_ID) Calculate and save correlation matrix <Z_i Z_j>. """ function correlation_matrix(ansatz; SAVE_ID) nbit = nbit_simulated(ansatz) V = ansatz.nbit_virtual om = zeros(Float64, nbit, nbit) for i =1:nbit, j=1:nbit if i!=j om[i,j] = measure_corr(ansatz, i=>Z, j=>Z) |> real println("<σz($i)σz($j)> = $(om[i,j])") end end for (token, var) in [ ("om", om), ] writedlm("data/chem_$(SAVE_ID)_$(token)$(tag)_N$(nbit)_V$V.dat", var) end end
Julia
2D
GiggleLiu/QuantumMPS
CuChem.jl
.jl
292
10
using CUDAnative, CuArrays using CUDAnative: device!, devices, CuDevice using CuYao import CuYao: cu CuArrays.allowscalar(false) function cu(chem::QuantumMPS) QuantumMPS(chem.nbit_measure, chem.nbit_virtual, chem.nbit_ancilla, chem.circuit, chem.initial_reg |> cu, chem.input_state) end
Julia
2D
GiggleLiu/QuantumMPS
TFI_onefile.jl
.jl
3,911
130
using Yao using Statistics: mean using LinearAlgebra rotor(noleading::Bool=false, notrailing::Bool=false) = noleading ? (notrailing ? Rx(0) : chain(Rx(0), Rz(0))) : (notrailing ? chain(Rz(0), Rx(0)) : chain(Rz(0), Rx(0), Rz(0))) function twoqubit_circuit(nlayer::Int, nrepeat::Int) nbit_measure = nbit_virtual = 1 nbit_used = nbit_measure + nbit_virtual circuit = chain(nbit_used) for i=1:nrepeat unit = chain(nbit_used) for j=1:nlayer push!(unit, put(nbit_used, 1=>rotor(true, false))) #push!(unit, put(nbit_used, 2=>rotor(true, false))) push!(unit, control(nbit_used, 1, 2=>(j%2==1 ? X : Z))) j == nlayer && push!(unit, put(nbit_used, 1=>rotor(false, true))) #j == nlayer && push!(unit, put(nbit_used, 2=>rotor(false, true))) end push!(unit, Measure{nbit_used, 1, AbstractBlock}(Z, (1,), 0, false)) if i==nrepeat for k=2:nbit_used push!(unit, Measure{nbit_used, 1, AbstractBlock}(Z, (k,), 0, false)) end end push!(circuit, unit) end dispatch!(circuit, :random) end circuit = twoqubit_circuit(2, 2) function gensample(circuit, basis; nbatch=1024) mblocks = collect_blocks(Measure, circuit) for m in mblocks m.operator = basis end reg = zero_state(nqubits(circuit); nbatch=nbatch) reg |> circuit mblocks end function energy(circuit, model::TFIChain; nbatch=1024) # measuring Z basis mblocks = gensample(circuit, Z; nbatch=nbatch) local eng = 0.0 for (a, b, v) in ((i, i+1, 1.0) for i=1:model.length-1) eng += v*mean(mblocks[a].results .* mblocks[b].results) end eng/=4 # measuring X basis mblocks = gensample(circuit, X; nbatch=nbatch) engx = sum(mean.([m.results for m in mblocks])) eng + model.h*engx/2 end struct TFIChain length::Int h::Float64 periodic::Bool TFIChain(length::Int; h::Real, periodic::Bool) = new(length, Float64(h), periodic) end function hamiltonian(model::TFIChain) model.periodic && throw() nbit = model.length sum(repeat(nbit, Z, (i,i+1)) for i=1:nbit-1)*0.25 + sum(put(nbit, i=>X) for i=1:nbit)*0.5model.h end using Test, Random nbit_simulated(qmps) = length(collect_blocks(Measure, qmps)) function expand_circuit(circuit) nbit = nbit_simulated(circuit) nm = 1 nv = 1 c = chain(nbit) for (i, blk) in enumerate(circuit) blk = chain([b for b in blk if !(b isa Measure)]...) push!(c, concentrate(nbit, blk, [(i-1)*nm+1:i*nm..., nbit-nv+1:nbit...])) end c end function train(circuit, model; maxiter=200, α=0.1, nbatch=1024) rots = collect(RotationGate, circuit) for i in 1:maxiter for r in rots r.theta += π/2 E₊ = energy(circuit, model; nbatch=nbatch) r.theta -= π E₋ = energy(circuit, model; nbatch=nbatch) r.theta += π/2 g = 0.5(E₊ - E₋) r.theta -= g*α end println("Iter $i, E/N = $(energy(circuit, model, nbatch=nbatch)/model.length)") end circuit end nspin = 4 model = TFIChain(nspin; h=0.5, periodic=false) h = hamiltonian(model) EG = eigen(mat(h) |> Matrix).values[1] @show EG/nspin circuit = twoqubit_circuit(2, nspin-1) train(circuit, model; α=0.5) @testset "energy-goodqn tfi" begin Random.seed!(4) hei = TFIChain(4; h=0., periodic=false) nbit = hei.length circuit = twoqubit_circuit(2, nbit-1) println("Number of parameters is ", circuit|> nparameters) bigc = expand_circuit(circuit) eng = energy(circuit, hei; nbatch=10000) hami = hamiltonian(hei) @show bigc @show parameters(circuit) @show parameters(bigc) eng_exact = expect(hami, zero_state(nbit) |> bigc) |> real @show eng, eng_exact @test isapprox(eng, eng_exact, rtol=0.2) end
Julia
2D
GiggleLiu/QuantumMPS
chainmodel.jl
.jl
1,080
32
include("applications.jl") function train(nsite;depth::Int=2) symmetry = :twoqubit model = TFI(nsite; h=0.5, periodic=false) ansatz = simple_ansatz(nsite, symmetry, depth; load_params=false) run_train(ansatz, model; SAVE_ID=Symbol(symmetry,:_d,depth), niter=500, start_point=0) end function measure(task::String; symmetry::Symbol=:su2, depth::Int=5) model = simple_model_heis(6) ansatz = simple_ansatz(6, symmetry, depth; load_params=true) nbit = nbit_simulated(ansatz) if task == "energy" eng_sample = energy(ansatz, model)/nbit println("Sampled value of energy/site = $eng_sample") elseif task == "energy_exact" eng = energy_exact(ansatz, model)/nbit println("Exact value of energy/site = $eng") elseif task == "fidelity" gs = ground_state(model) fid = fidelity_exact(ansatz, gs)[] println("Exact value of fidelity = $fid") elseif task == "szsz" correlation_matrix(ansatz; SAVE_ID=symmetry) else throw(ArgumentError("$task is not defined!")) end end
Julia
2D
GiggleLiu/QuantumMPS
src/TFI.jl
.jl
1,078
44
export TFI struct TFI{D} <: AbstractModel{D} size::NTuple{D, Int} h::Float64 periodic::Bool TFI(size::Int...; h::Real, periodic::Bool) = new{length(size)}(size, Float64(h), periodic) end function get_bonds(model::TFI{1}) nbit, = model.size [(i, i%nbit+1, 1.0) for i in 1:(model.periodic ? nbit : nbit-1)] end Base.size(model::TFI) = model.size function hamiltonian(model::TFI{1}) model.periodic && throw() nbit = nspin(model) sum(repeat(nbit, Z, (i,i+1)) for i=1:nbit-1)*0.25 + sum(put(nbit, i=>X) for i=1:nbit)*0.5model.h end function energy(chem::QuantumMPS, model::TFI) energy(chem, Z, model) + energy(chem, X, model) end function energy(chem::QuantumMPS, pauli::ZGate, model::TFI) res = gensample(chem, pauli) local eng = 0.0 for bond in ((i, i+1, 1.0) for i=1:nspin(model)-1) eng += bond[3]*mean(res[:,bond[1]].*res[:,bond[2]]) end eng/4 end function energy(chem::QuantumMPS, pauli::XGate, model::TFI) res = gensample(chem, pauli) eng = mean(sum(res, dims=2)) model.h*eng/2 end
Julia
2D
GiggleLiu/QuantumMPS
src/Adam.jl
.jl
972
41
export Adam, update! mutable struct Adam lr::AbstractFloat gclip::AbstractFloat beta1::AbstractFloat beta2::AbstractFloat eps::AbstractFloat t::Int fstm scndm end Adam(; lr=0.001, gclip=0, beta1=0.9, beta2=0.999, eps=1e-8)=Adam(lr, gclip, beta1, beta2, eps, 0, nothing, nothing) function update!(w, g, p::Adam) gclip!(g, p.gclip) if p.fstm===nothing; p.fstm=zero(w); p.scndm=zero(w); end p.t += 1 lmul!(p.beta1, p.fstm) BLAS.axpy!(1-p.beta1, g, p.fstm) lmul!(p.beta2, p.scndm) BLAS.axpy!(1-p.beta2, g .* g, p.scndm) fstm_corrected = p.fstm / (1 - p.beta1 ^ p.t) scndm_corrected = p.scndm / (1 - p.beta2 ^ p.t) BLAS.axpy!(-p.lr, @.(fstm_corrected / (sqrt(scndm_corrected) + p.eps)), w) end function gclip!(g, gclip) if gclip == 0 g else gnorm = vecnorm(g) if gnorm <= gclip g else BLAS.scale!(gclip/gnorm, g) end end end
Julia
2D
GiggleLiu/QuantumMPS
src/gradient.jl
.jl
1,173
39
export QMPSOptimizer, gradients_exact struct QMPSOptimizer chem::QuantumMPS model::AbstractModel optimizer diff_blocks params::Vector QMPSOptimizer(chem::QuantumMPS, model::AbstractModel, optimizer) = new(chem, model, optimizer, collect_blocks(AbstractDiff, chem.circuit), parameters(chem.circuit)) end # TODO: setiparameters! throw number of parameters mismatch error! function gradient(chem::QuantumMPS, db::AbstractDiff, model::AbstractModel) db.block.theta += π/2 epos = energy(chem, model) db.block.theta -= π eneg = energy(chem, model) db.block.theta += π/2 real(epos-eneg)/2 end import Base: iterate function iterate(qo::QMPSOptimizer, state::Int=1) # initialize the parameters grad = gradient.(Ref(qo.chem), qo.diff_blocks, Ref(qo.model)) update!(qo.params, grad, qo.optimizer) dispatch!(qo.chem.circuit, qo.params) (grad, state+1) end function gradients_exact(chem, hami; dbs=nothing) nbit = nbit_simulated(chem) circuit = expand_circuit(chem) if dbs == nothing dbs = collect_blocks(AbstractDiff, circuit) end opdiff.(()->state_exact(chem), dbs, Ref(hami)) end
Julia
2D
GiggleLiu/QuantumMPS
src/correlation.jl
.jl
1,928
60
export measure_corr """ measure correlator. e.g. measure_corr(chem, 1=>X, 3=>X) will measure <σₓ¹σₓ³> from a quantum MPS. """ function measure_corr(chem::QuantumMPS, si::Pair{Int, <:PauliGate}, sj::Pair{Int, <:PauliGate}) si.first > sj.first && return measure_corr(chem, sj, si) si.first == sj.first && throw(ArgumentError("Qubit address conflict error!")) T = datatype(chem.initial_reg) input_state = chem.input_state reg = chem.initial_reg |> copy nv = chem.nbit_virtual + chem.nbit_ancilla nrep = nrepeat(chem) for i = nrep+1:nrep+nv input_state[i] == 1 && apply!(reg, put(nv+1, (i-nrep+1)=>XGate{T}())) end local res = nothing input_state[1] == 1 && apply!(reg, put(nv+1, 1=>XGate{T}())) for i=1:nrep reg |> getblock(chem, i) if i!=nrep res_i = _measure!(reg, i, [si, sj], input_state, true) if res_i != nothing if res != nothing return mean(res.*res_i) else res = res_i end end end end for i=1:nv+1-chem.nbit_ancilla res_i = _measure!(reg, i+nrep-1, [si, sj], input_state, false) if res_i != nothing if res != nothing return mean(res.*res_i) else res = res_i end end end throw() end function _measure!(reg::AbstractRegister{B, T}, i, sl, input_state, reset) where {B, T} for si in sl if i==si.first op_i = eigen!(si.second |> mat |>Matrix) reg |> put(nqubits(reg), 1=>matblock(T.(op_i.vectors' |> Matrix))) return @inbounds 1 .- 2 .* (reset ? measure_collapseto!(reg, 1; config=input_state[i+1]) : measure_remove!(reg, 1)) end end reset ? measure_collapseto!(reg, 1; config=input_state[i+1]) : measure_remove!(reg, 1) nothing end
Julia
2D
GiggleLiu/QuantumMPS
src/AbstractModel.jl
.jl
1,050
41
export AbstractModel, Heisenberg export heisenberg_ij, hamiltonian, heisenberg_term, ground_state, energy, energy_exact, get_bonds, energy, heisenberg_2d, nspin abstract type AbstractModel{D} end abstract type AbstractHeisenberg{D} <: AbstractModel{D} end nspin(model::AbstractModel) = prod(size(model)) """ energy_exact(tc::QuantumMPS, model::AbstractModel) -> Float64 Exact ground state energy. """ function energy_exact(tc::QuantumMPS, model::AbstractModel) nbit = nbit_simulated(tc) expect(hamiltonian(model), state_exact(tc)) |> real end """ ground_state(model::AbstractModel) -> DefaultRegister Get the exact ground state of a model. """ function ground_state(model::AbstractModel) # get the ground state hami = hamiltonian(model) E, v = eigsolve(mat(hami), 1, :SR) register(v[1]) end """ get_bonds(model::AbstractHeisenberg) -> Vector Get the weighted bonds of a Heisenberg model in the form Tuple(i,j,w_ij). """ function get_bonds end include("Heisenberg.jl") include("J1J2.jl") include("TFI.jl")
Julia
2D
GiggleLiu/QuantumMPS
src/Core.jl
.jl
2,936
90
export getblock, nbit_used, nbit_simulated, nrepeat, expand_circuit, QuantumMPS export state_exact, fidelity_exact export gensample """ QuantumMPS{RT} Members: `nbit_measure`, number of qubits measured in a single iteration, or physical qubits. `nbit_virtual`, number of virtual qubits to represent the virtual bond dimension in quantum MPS. `circuit`, the circuit structure (measurements are not included). `initial_reg`, the initial state (GPUReg or a regular one), always prepaired in |0>. `nbit_ancilla`, number of ancilla qubits. """ struct QuantumMPS{RT} nbit_measure::Int nbit_virtual::Int nbit_ancilla::Int circuit::AbstractBlock initial_reg::RT input_state::Vector{Int} end getblock(chem::QuantumMPS, i::Int) = chem.circuit[i] nrepeat(chem::QuantumMPS) = length(chem.circuit) nbit_used(chem::QuantumMPS) = nqubits(chem.circuit[1]) nbit_simulated(chem::QuantumMPS) = chem.nbit_measure*nrepeat(chem) + chem.nbit_virtual """convert a chem circuit to a circuit with no reuse""" function expand_circuit(tnchem) nbit = nbit_simulated(tnchem) + tnchem.nbit_ancilla nm = tnchem.nbit_measure nv = tnchem.nbit_virtual + tnchem.nbit_ancilla c = chain(nbit) for (i, blk) in enumerate(tnchem.circuit) push!(c, concentrate(nbit, blk, [(i-1)*nm+1:i*nm..., nbit-nv+1:nbit...])) end c end function state_exact(chem::QuantumMPS) circuit = expand_circuit(chem) if chem.nbit_ancilla == 0 return product_state(nqubits(circuit), chem.input_state|>packbits) |> circuit else nbit = nqubits(circuit) product_state(nbit, chem.input_state|>packbits) |> circuit |> focus!((1:nbit-chem.nbit_ancilla)...) |> remove_env! end end function remove_env!(reg::DefaultRegister) reg.state = dropdims(sum(reg |> rank3, dims=2), dims=2) reg end function fidelity_exact(chem::QuantumMPS, ground_state::AbstractRegister) fidelity(ground_state, state_exact(chem)) end function gensample(chem::QuantumMPS, pauli::PauliGate) input_state = chem.input_state reg = chem.initial_reg |> copy nv = chem.nbit_virtual + chem.nbit_ancilla nrep = nrepeat(chem) T = datatype(chem.initial_reg) op = eigen!(pauli |> mat |>Matrix) G = matblock(T.(op.vectors' |> Matrix)) rotor = put(nv+1, 1=>G) local res = similar(reg |> state, Int, nbatch(reg), nbit_simulated(chem)) for i = nrep+1:nrep+nv input_state[i] == 1 && apply!(reg, put(nv+1, (i-nrep+1)=>X)) end input_state[1] == 1 && apply!(reg, put(nv+1, 1=>X)) for i=1:nrep reg |> getblock(chem, i) if i!=nrep reg |> rotor @inbounds res[:,i] = 2 .* measure_collapseto!(reg, 1; config=input_state[i+1]) .- 1 end end for i=1:nv+1-chem.nbit_ancilla reg |> put(nqubits(reg), 1=>G) @inbounds res[:,i+nrep-1] = 2 .* measure_remove!(reg, 1) .- 1 end res end
Julia
2D
GiggleLiu/QuantumMPS
src/J1J2.jl
.jl
1,535
55
export J1J2 """ J1J2{D} <: AbstractHeisenberg{D} frustrated Heisenberg model. """ struct J1J2{D} <: AbstractHeisenberg{D} size::NTuple{D, Int} periodic::Bool J2::Float64 J1J2(size::Int...; J2::Real, periodic::Bool) = new{length(size)}(size, periodic, Float64(J2)) end Base.size(model::J1J2) = model.size function hamiltonian(model::J1J2) nbit = nspin(model) sum(x->x[3]*heisenberg_ij(nbit, x[1], x[2]), get_bonds(model))*0.25 end @inline function get_site(ij, mn, pbc::Val{true}) Tuple(mod(i-1,m)+1 for (i,m) in zip(ij, mn)) end @inline function get_site(ij, mn, pbc::Val{false}) Tuple(i<=m ? i : 0 for (i,m) in zip(ij, mn)) end function get_bonds(model::J1J2{2}) m, n = model.size cis = LinearIndices(model.size) bonds = Tuple{Int, Int, Float64}[] for i=1:m, j=1:n for (_i, _j) in [(i+1, j), (i, j+1)] sites = get_site((_i, _j), (m, n), Val(model.periodic)) if all(sites .> 0) push!(bonds, (cis[i,j], cis[sites...], 1.0)) end end for (_i, _j) in [(i-1, j-1), (i-1, j+1)] sites = get_site((_i, _j), (m, n), Val(model.periodic)) if all(sites .> 0) push!(bonds, (cis[i,j], cis[sites...], model.J2)) end end end bonds end function get_bonds(model::J1J2{1}) nbit, = model.size vcat([(i, i%nbit+1, 1.0) for i in 1:(model.periodic ? nbit : nbit-1)], [(i, (i+1)%nbit+1, model.J2) for i in 1:(model.periodic ? nbit : nbit-2)]) end
Julia
2D
GiggleLiu/QuantumMPS
src/Heisenberg.jl
.jl
1,635
51
struct Heisenberg{D} <: AbstractHeisenberg{D} size::NTuple{D, Int} periodic::Bool Heisenberg(size::Int...; periodic::Bool) = new{length(size)}(size, periodic) end Base.size(model::Heisenberg) = model.size heisenberg_ij(nbit::Int, i::Int, j::Int=i+1) = put(nbit, i=>X)*put(nbit, j=>X) + put(nbit, i=>Y)*put(nbit, j=>Y) + put(nbit, i=>Z)*put(nbit, j=>Z) const heisenberg_term = repeat(2, X, 1:2) + repeat(2, Y, 1:2) + repeat(2, Z, 1:2) function hamiltonian(model::Heisenberg) nbit = nspin(model) sum(x->heisenberg_ij(nbit, x[1], x[2]), get_bonds(model))*0.25 end function get_bonds(model::Heisenberg{2}) m, n = model.size cis = LinearIndices(model.size) bonds = Tuple{Int, Int, Float64}[] for i=1:m, j=1:n (i!=m || model.periodic) && push!(bonds, (cis[i,j], cis[i%m+1,j], 1.0)) (j!=n || model.periodic) && push!(bonds, (cis[i,j], cis[i,j%n+1], 1.0)) end bonds end function get_bonds(model::AbstractModel{1}) nbit, = model.size [(i, i%nbit+1, 1.0) for i in 1:(model.periodic ? nbit : nbit-1)] end """ energy(chem::QuantumMPS, model::AbstractHeisenberg) -> Float64 Ground state energy by sampling Quantum MPS. The hamiltonian is limited to Heisenberg and J1J2 Type. """ function energy(chem::QuantumMPS, model::AbstractHeisenberg) energy(chem, X, model) + energy(chem, Y, model) + energy(chem, Z, model) end function energy(chem::QuantumMPS, pauli::PauliGate, model::AbstractHeisenberg) res = gensample(chem, pauli) local eng = 0.0 for bond in get_bonds(model) eng += bond[3]*mean(res[:,bond[1]].*res[:,bond[2]]) end eng/4 end
Julia
2D
GiggleLiu/QuantumMPS
src/QMPS.jl
.jl
370
22
module QMPS using Yao using Yao.ConstGate: SWAP using BitBasis: packbits using StatsBase using StatsBase: mean using LinearAlgebra using KrylovKit using QuAlgorithmZoo PauliGate{T} = Union{XGate{T}, YGate{T}, ZGate{T}} include("Adam.jl") include("Core.jl") include("AbstractModel.jl") include("gradient.jl") include("correlation.jl") include("ansatz/ansatz.jl") end
Julia
2D
GiggleLiu/QuantumMPS
src/ansatz/su2_circuit.jl
.jl
1,700
51
function su2_unit(nbit::Int, i::Int, j::Int) put(nbit, (i,j)=>rot(SWAP, 0.0)) end """ su2_circuit(nbit_virtual::Int, nlayer::Int, nrepeat::Int, pairs::Vector) -> Sequence SU(2) symmetry quantum circuit ansatz for evolving states in S^2 = 0 good quantum number block. It requires `2+nbit_virtual` qubits, `pairs` is the geometry of entanglements. """ function su2_circuit(nbit_virtual::Int, nlayer::Int, nrepeat::Int, pairs::Vector) nbit_used = 2 + nbit_virtual circuit = chain(nbit_used) for i=1:nrepeat unit = chain(nbit_used) if i==1 for j=2-(nrepeat%2):2:nbit_virtual push!(unit, singlet_block(nbit_used, j, j+1)) end end if i%2 != nrepeat%2 push!(unit, singlet_block(nbit_used, 1, nbit_used)) else if i!=1 push!(unit, swap(nbit_used, 1, nbit_used)) # fix swap parameter order! end end for j=1:nlayer nring = nbit_virtual+1 nring <= 1 && continue ops = [su2_unit(nbit_used, i, j) for (i,j) in pairs] push!(unit, chain(nbit_used, ops)) end push!(circuit, unit) end dispatch!(circuit, :random) end """construct a circuit for generating singlets.""" function singlet_block(nbit::Int, i::Int, j::Int) unit = chain(nbit) push!(unit, put(nbit, i=>chain(X, H))) push!(unit, control(nbit, -i, j=>X)) end function model(::Val{:su2}; nbit, V, B=4096, nlayer=5, pairs) nrepeat = nbit - V c = su2_circuit(V, nlayer, nrepeat, pairs) |> autodiff(:QC) chem = QuantumMPS(1, V, 1, c, zero_state(V+2, nbatch=B), zeros(Int, nbit+1)) chem end
Julia
2D
GiggleLiu/QuantumMPS
src/ansatz/general_circuit.jl
.jl
2,153
62
using Yao export random_circuit, pair_ring """ pair_ring(n::Int) -> Vector Pair ring. """ pair_ring(n::Int) = [i=>mod(i, n)+1 for i=1:n] """ cnot_entangler(n::Int, pairs::Vector{Pair}) = ChainBlock Arbitrary entangler unit, support lazy construction. """ cnot_entangler(n::Int, pairs) = chain(n, control(n, [ctrl], target=>X) for (ctrl, target) in pairs) """ rotor(noleading::Bool=false, notrailing::Bool=false) -> MatrixBlock `Rz(η)⋅Rx(θ)⋅Rz(ξ)`, remove the first Rz gate if `noleading == true`, remove the last Rz gate if `notrailing == true`. """ rotor(noleading::Bool=false, notrailing::Bool=false) = noleading ? (notrailing ? Rx(0) : chain(Rx(0), Rz(0))) : (notrailing ? chain(Rz(0), Rx(0)) : chain(Rz(0), Rx(0), Rz(0))) """ rotorset(noleading::Bool=false, notrailing::Bool=false) -> ChainBlock A sequence of rotors applied on all sites. """ rotorset(nbit::Int, noleading::Bool=false, notrailing::Bool=false) = chain(nbit, [put(nbit, j=>rotor(noleading, notrailing)) for j=1:nbit]) """ A kind of widely used differentiable quantum circuit, angles in the circuit are randomely initialized. ref: 1. Kandala, A., Mezzacapo, A., Temme, K., Takita, M., Chow, J. M., & Gambetta, J. M. (2017). Hardware-efficient Quantum Optimizer for Small Molecules and Quantum Magnets. Nature Publishing Group, 549(7671), 242–246. https://doi.org/10.1038/nature23879. """ function random_circuit(nbit_measure::Int, nbit_virtual::Int, nlayer::Int, nrepeat::Int, entangler_pairs) nbit_used = nbit_measure + nbit_virtual circuit = chain(nbit_used) entangler = cnot_entangler(nbit_used, entangler_pairs) for i=1:nrepeat unit = chain(nbit_used) for j=1:nlayer push!(unit, rotorset(nbit_used, false, false)) push!(unit, entangler) end push!(circuit, unit) end dispatch!(circuit, :random) end function model(::Val{:general}; nbit::Int, V::Int, B::Int=4096, nlayer::Int=5, pairs) c = random_circuit(1, V, nlayer, nbit-V, pairs) |> autodiff(:QC) chem = QuantumMPS(1, V, 0, c, zero_state(V+1, nbatch=B), zeros(Int, nbit)) chem end
Julia
2D
GiggleLiu/QuantumMPS
src/ansatz/ansatz.jl
.jl
531
19
export model """ model(which::Symbol; nbit::Int, V::Int, B::Int=4096, nlayer::Int=5) predefined models, `which` should be one of :random, :u1, :su2. * `nbit` is the system size (length of MPS), * `V` is the number of virtual qubits, * `B` is the batch size. * `nlayer` is the number of layers in a block. """ model(which::Symbol, args...; kwargs...) = model(Val(which), args...; kwargs...) include("general_circuit.jl") include("u1_circuit.jl") include("su2_circuit.jl") include("twoqubit_circuit.jl") include("cluster.jl")
Julia
2D
GiggleLiu/QuantumMPS
src/ansatz/twoqubit_circuit.jl
.jl
946
28
export twoqubit_circuit function twoqubit_circuit(nlayer::Int, nrepeat::Int) nbit_measure = nbit_virtual = 1 nbit_used = nbit_measure + nbit_virtual circuit = chain(nbit_used) for i=1:nrepeat unit = chain(nbit_used) for j=1:nlayer push!(unit, put(nbit_used, 1=>rotor(true, false))) #push!(unit, put(nbit_used, 2=>rotor(true, false))) push!(unit, control(nbit_used, 1, 2=>(j%2==1 ? X : Z))) j == nlayer && push!(unit, put(nbit_used, 1=>rotor(false, true))) #j == nlayer && push!(unit, put(nbit_used, 2=>rotor(false, true))) end push!(circuit, unit) end dispatch!(circuit, :random) end function model(::Val{:twoqubit}; nbit::Int, B::Int=4096, nlayer::Int=5, kwargs...) V = 1 c = twoqubit_circuit(nlayer, nbit-V) |> autodiff(:QC) chem = QuantumMPS(1, V, 0, c, zero_state(V+1, nbatch=B), zeros(Int, nbit)) chem end
Julia
2D
GiggleLiu/QuantumMPS
src/ansatz/cluster.jl
.jl
479
14
cluster_block(isfirst::Val{true}) = chain(2, [repeat(2, H, 1:2), control(2, 1, 2=>Z)]) cluster_block(isfirst::Val{false}) = chain(2, [swap(2, 1, 2), put(2, 2=>H), control(2, 1, 2=>Z)]) function cluster_circuit(nrepeat::Int) sequence([cluster_block(Val(i==1)) for i=1:nrepeat]) end function model(::Val{:cluster}; nbit, B=4096) nrepeat = nbit - 1 c = cluster_circuit(nrepeat) chem = QuantumMPS(1, 1, 0, c, zero_state(2, nbatch=B), zeros(Int, nbit)) chem end
Julia
2D
GiggleLiu/QuantumMPS
src/ansatz/u1_circuit.jl
.jl
1,115
36
function u1_unit(nbit::Int, i::Int, j::Int) chain(nbit, put(nbit, i=>Rz(0)), put(nbit, j=>Rz(0)), put(nbit, (i,j)=>rot(SWAP, 0)) ) end """ u1_circuit(nbit_measure::Int, nbit_virtual::Int, nlayer::Int, nrepeat::Int, entangler_pairs) -> Sequence U(1) symmetric quantum circuit ansatz. """ function u1_circuit(nbit_measure::Int, nbit_virtual::Int, nlayer::Int, nrepeat::Int, entangler_pairs) nbit_used = nbit_measure + nbit_virtual circuit = chain(nbit_used) for i=1:nrepeat unit = chain(nbit_used) for j=1:nlayer push!(unit, chain(nbit_used, u1_unit(nbit_used, i, j) for (i,j) in entangler_pairs)) for k=1:(i==nrepeat ? nbit_used : nbit_measure) put(nbit_used, k=>Rz(0)) end end push!(circuit, unit) end dispatch!(circuit, :random) end function model(::Val{:u1}; nbit = 20, V=4, B=4096, nlayer=5, pairs) nrepeat = (nbit - V) c = u1_circuit(1, V, nlayer, nrepeat, pairs) |> autodiff(:QC) chem = QuantumMPS(1, V, 0, c, zero_state(V+1, nbatch=B), [i%2 for i=1:nbit]) chem end
Julia
2D
GiggleLiu/QuantumMPS
test/runtests.jl
.jl
3,587
82
push!(LOAD_PATH, abspath("src")) using Yao using LinearAlgebra, Statistics using BitBasis: packbits using QMPS using Test, Random # make it cluster state @testset "convert wave function check" begin chem = model(:su2; nbit=9, nlayer=2, B=10, V=5, pairs=pair_ring(5)) c = random_circuit(1, 4, 2, 5, pair_ring(5)) circuit = expand_circuit(chem) @test zero_state(nqubits(circuit)) |> circuit |> statevec |> length == 2^10 end @testset "measure check" begin Random.seed!(5) chem = model(:su2; nbit=9, nlayer=2, B=10000, V=5, pairs=pair_ring(5)) circuit = expand_circuit(chem) for (i, j) in [(3,5), (5,3), (3,7), (7,3), (6,8), (8,6)] @show (i,j) mean35 = expect(heisenberg_ij(nqubits(circuit), i, j), zero_state(nqubits(circuit)) |> circuit) |> real eng = sum(g->measure_corr(chem, i=>g, j=>g), [X, Y, Z]) @test isapprox(mean35, eng, rtol=0.4) end end @testset "j1j2" begin j1j2 = J1J2(4; periodic=false, J2=0.5) @test get_bonds(j1j2) == [(1, 2, 1.0),(2, 3, 1.0), (3, 4, 1.0), (1,3, 0.5), (2,4, 0.5)] j1j2 = J1J2(4; periodic=true, J2=0.5) @test get_bonds(j1j2) == [(1, 2, 1.0), (2, 3, 1.0), (3, 4, 1.0), (4, 1, 1.0), (1,3, 0.5), (2,4, 0.5), (3,1, 0.5), (4,2, 0.5)] j1j2 = J1J2(3, 3; periodic=false, J2=0.5) prs = [1=>2, 1=>4, 2=>3, 2=>5, 2=>4, 3=>6, 3=>5, 4=>5, 4=>7, 5=>6, 5=>8, 5=>1, 5=>7, 6=>9, 6=>2, 6=>8, 7=>8, 8=>9, 8=>4, 9=>5] vs = [1.0, 1, 1, 1, 0.5, 1.0, 0.5, 1.0, 1.0, 1.0, 1.0, 0.5, 0.5, 1.0, 0.5, 0.5, 1.0, 1.0, 0.5, 0.5] tps = [(i,j,v) for ((i,j), v) in zip(prs, vs)] @test sort(get_bonds(j1j2)) == sort(tps) j1j2 = J1J2(3, 3; periodic=true, J2=0.5) @test sort(get_bonds(j1j2)) == sort([(1,2,1.0), (1,4,1.0), (1,9,0.5), (1,6,0.5), (2,3,1.0), (2,5,1.0), (2,7,0.5), (2,4,0.5), (3,1,1.0), (3,6,1.0), (3,8,0.5), (3,5,0.5), (4,5,1.0), (4,7,1.0), (4,3,0.5), (4,9,0.5), (5,6,1.0), (5,8,1.0), (5,1,0.5), (5,7,0.5), (6,4,1.0), (6,9,1.0), (6,2,0.5), (6,8,0.5), (7,8,1.0), (7,1,1.0), (7,6,0.5), (7,3,0.5), (8,9,1.0), (8,2,1.0), (8,4,0.5), (8,1,0.5), (9,7,1.0), (9,3,1.0), (9,5,0.5), (9,2,0.5)]) end @testset "energy-goodqn" begin Random.seed!(2) for hei in [Heisenberg(10; periodic=false), Heisenberg(3, 3; periodic=false), J1J2(3,3; J2=0.5, periodic=false)] nbit = nspin(hei) for xmodel in [:u1, :su2] @show xmodel pairs = pair_ring(xmodel==:su2 ? 4 : 5) chem = model(:general; nbit=nbit, B=10000, V=4, pairs=pairs) println("Number of parameters is ", chem.circuit |> nparameters) circuit = expand_circuit(chem) eng = energy(chem, hei) hami = hamiltonian(hei) eng_exact = expect(hami, product_state(nbit, chem.input_state |> packbits) |> circuit) |> real @test isapprox(eng, eng_exact, rtol=0.3) end end end @testset "energy-goodqn tfi" begin Random.seed!(11) for hei in [TFI(2; h=0.5, periodic=false)] nbit = nspin(hei) for xmodel in [:twoqubit] @show xmodel chem = model(xmodel; nbit=nbit, B=10000) println("Number of parameters is ", chem.circuit |> nparameters) circuit = expand_circuit(chem) eng = energy(chem, hei) hami = hamiltonian(hei) @show circuit eng_exact = expect(hami, product_state(nbit, chem.input_state |> packbits) |> circuit) |> real @show eng, eng_exact @test isapprox(eng, eng_exact, rtol=0.3) end end end
Julia
2D
daihui/QuantumWalkSimulation
classicalRW.py
.py
1,583
58
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'levitan' import math from numpy import * import numpy as np import random from matplotlib import pyplot as plt def classicalRanNum(): coinX = int(random.choice(['1', '-1'])) coinY = int(random.choice(['1', '-1'])) return coinX, coinY # print classicalRanNum() def classicalWalkerPosition(): positionX = 0 positionY = 0 return positionX, positionY def classicalWalk(walkNum): walkerPositionX, walkerPositionY = classicalWalkerPosition() for i in range(0, walkNum): coinX, coinY = classicalRanNum() walkerPositionX += coinX walkerPositionY += coinY return walkerPositionX, walkerPositionY def classicalRWDistr(walkNum, matrixNum,satNum): # positionList = [] walkerCount = zeros([2 *matrixNum + 1, 2 * matrixNum + 1]) for i in range(0, satNum): walker = classicalWalk(walkNum) #print walker,walker[0],walker[1] # positionList.append(walker) walkerCount[walker[0]+matrixNum][walker[1]+matrixNum] += float(1.0 / satNum) return walkerCount def Plot2D(classcialWalker,steps): plt.figure(1) ax1=plt.subplot(111) plt.sca(ax1) plt.title('2D distribution of %s steps Classical Random Walk' %steps) plt.xlabel('X Position(started in center)') plt.ylabel('Y Position(started in center)') plt.imshow(classcialWalker) plt.savefig('Fig/CRW_' + str(steps) + '.png') plt.close() for i in range(1,11): classicalWalker=classicalRWDistr(i*10,100,100000) Plot2D(classicalWalker,i*10)
Python
2D
daihui/QuantumWalkSimulation
AnimatedScatter.py
.py
4,512
125
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'levitan' import matplotlib.pyplot as plt import matplotlib.animation as animation from numpy import * import QWithDiffShift as QDS import time class AnimatedScatterQW(object): """An animated scatter plot using matplotlib.animations.FuncAnimation.""" def __init__(self, X0, X1, steps, shiftGateNum, node): self.X0 = X0 self.X1 = X1 self.steps = steps self.shiftGateNum = shiftGateNum self.node = node self.step = 1 self.linedata = zeros([self.node, 1]) self.distri = self.distribution() # Setup the figure and axes... self.fig = plt.figure() self.ax1 = plt.subplot(211) plt.title('Quantum Walk in Cycle Graph,view in cycle') self.step_text1 = self.ax1.text(-1.8, 1.2, '') self.step_text1.set_text('') self.ax2 = plt.subplot(212) # self.ax2_axis=self.ax2.axis([1, self.node, 0, 1]) # self.ax2_axis.set_axis() plt.title('Quantum Walk in Cycle Graph,position 0 probability') # plt.title('Quantum Walk in Cycle Graph,position probability by step') # Then setup FuncAnimation. self.ani = animation.FuncAnimation(self.fig, self.update, frames=200, interval=500, init_func=self.setup_plot, blit=True) def setup_plot(self): """Initial drawing of the scatter plot.""" data = next(self.distri) # temp=array([data[:,2]]).T # print temp # self.linedata=column_stack((self.linedata,temp)) # print self.linedata x = data[:, 0] y = data[:, 1] d = data[:, 2] self.ax1.axis([-4.5, 4.5, -1.5, 1.5]) self.scat = self.ax1.scatter(x, y, s=d, c='red', marker='o', animated=True) self.ax2.axis([1, 5000, 0, 1]) self.line, = self.ax2.plot([], []) # For FuncAnimation's sake, we need to return the artist we'll be using # Note that it expects a sequence of artists, thus the trailing comma. return self.scat, self.line, def distribution(self): """Generate a quantum walk distribution in Cycle Graph . """ step = 1 radius = 1 node = self.node data = zeros([node, 3], float) Filename = 'Data/' + time.strftime('%Y%m%d-%H-%M-%S') + '.txt' distrFlie = open(Filename, 'w+') for j in range(node): data[j, 0] = sin(j * 2 * math.pi / node) * radius data[j, 1] = cos(j * 2 * math.pi / node) * radius while True: distribution = QDS.QWCicleDistribution(self.X0, self.X1, step, self.shiftGateNum, node) # data[:,2]= QDS.ciclePosiTrans(distribution, step, node) data[:, 2] = distribution # write distribution to txt file distrFlie.write(str(step) + '\t') for x in range(shape(distribution)[0]): distrFlie.write(str(distribution[x]) + '\t') distrFlie.write('\n') self.step = step print ('step: %s') % step step += 1 yield data distrFlie.close() def update(self, i): """Update the scatter plot.""" data = next(self.distri) # Set x and y data... temp = array([data[:, 2]]).T # print temp self.linedata = column_stack((self.linedata, temp)) m, n = shape(self.linedata) # print self.linedata self.scat.set_offsets(data[:, :2]) # self.line.set_offsets(data[:,:2]) # Set sizes... self.scat._sizes = data[:, 2] * 200 # self.line._sizes = data[:,2]*500 lineResize = self.linedata.copy() lineResize.resize(1, self.step) # print lineResize[0] x = arange(1, self.step + 1) y = lineResize # print x,y self.line.set_data(x, y) self.step_text1.set_text('Setp:%s' % self.step) # self.ax2.axis([1, self.step, 0, 1]) # self.ax2_axis.set_axis([[1, self.step, 0, 1]]) # self.scat.set_title(self.Title) # Set colors.. # self.scat.set_array(data[3]) # We need to return the updated artist for FuncAnimation to draw.. # Note that it expects a sequence of artists, thus the trailing comma. return self.scat, self.line, self.step_text1, def show(self): plt.show() if __name__ == '__main__': a = AnimatedScatterQW(1, 0, 100, 3, 8) a.show()
Python
2D
daihui/QuantumWalkSimulation
quantumRWTest.py
.py
582
23
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'levitan' import quantumRW as QW from numpy import * from matplotlib import pyplot as plt import quantumRWMat as QWM totalSteps=100 plotSteps=10 # steps=50 # qwalker= QW.distriQW(1/sqrt(2),1j/sqrt(2),1/sqrt(2),1j/sqrt(2),steps,1) #QW.Plot2D(qwalker) #QW.PlotX(qwalker,steps) #QW.writeQW(qwalker,'QW_'+str(steps)+'.txt') #qwalker=QW.quantumWalker(1/sqrt(2),1j/sqrt(2),1/sqrt(2),1j/sqrt(2),totalSteps,plotSteps) distribution=QWM.QWDistribution(1/sqrt(2),1j/sqrt(2),1/sqrt(2),1j/sqrt(2),100) QWM.Plot2D(distribution,100)
Python
2D
daihui/QuantumWalkSimulation
quantumRWMat.py
.py
5,568
143
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'levitan' """ This is matrix release for 2D quantum walk simulation. 量子游走的基本过程:有一个初始量子态,coin是一个幺正变换,一次游走即coin对量子态变换一次 然后根据量子态walk一步,得到一个位置概率分布,如此反复。 """ from numpy import * from matplotlib import pyplot as plt # 初始化量子态,是一个对角矩阵 def initQuanStat(X0, X1, Y0, Y1): initQuanStat = zeros([4, 4], complex) initQuanStat[0][0] = X0 initQuanStat[1][1] = X1 initQuanStat[2][2] = Y0 initQuanStat[3][3] = Y1 return initQuanStat # 定义2D hadamard coin,实际是2个1D Coin的直积态 def hadamardCoin(): hadamardCoin = array(([1 / sqrt(2), 1 / sqrt(2), 0, 0], [1 / sqrt(2), -1 / sqrt(2), 0, 0] , [0, 0, 1 / sqrt(2), 1 / sqrt(2)], [0, 0, 1 / sqrt(2), -1 / sqrt(2)]), complex) return hadamardCoin # 根据走了的步数定义空位置矩阵 def initPositionMap(steps): positionMap = zeros([2 * steps + 1, 2 * steps + 1, 4, 4], complex) return positionMap # 对量子态经行coin变换 def coinOperator(positionMap, coin): dimension = shape(positionMap)[0] for i in range(dimension): for j in range(dimension): positionMap[i][j] = dot(positionMap[i][j], coin) return positionMap # 根据量子态进行位置变换,相当于一次walk def shiftOperator(coinMap, step): newPositionMap = initPositionMap(step) for i in range(2 * step - 1): for j in range(2 * step - 1): newPositionMap[i][j][0][0] += coinMap[i][j][0][0] newPositionMap[i][j][1][0] += coinMap[i][j][1][0] newPositionMap[i][j][2][2] += coinMap[i][j][2][2] newPositionMap[i][j][3][2] += coinMap[i][j][3][2] newPositionMap[i][j + 2][0][1] += coinMap[i][j][0][1] newPositionMap[i][j + 2][1][1] += coinMap[i][j][1][1] newPositionMap[i][j + 2][2][2] += coinMap[i][j][2][2] newPositionMap[i][j + 2][3][2] += coinMap[i][j][3][2] newPositionMap[i + 2][j][0][0] += coinMap[i][j][0][0] newPositionMap[i + 2][j][1][0] += coinMap[i][j][1][0] newPositionMap[i + 2][j][2][3] += coinMap[i][j][2][3] newPositionMap[i + 2][j][3][3] += coinMap[i][j][3][3] newPositionMap[i + 2][j + 2][0][1] += coinMap[i][j][0][1] newPositionMap[i + 2][j + 2][1][1] += coinMap[i][j][1][1] newPositionMap[i + 2][j + 2][2][3] += coinMap[i][j][2][3] newPositionMap[i + 2][j + 2][3][3] += coinMap[i][j][3][3] return newPositionMap # quantum walk 的整体封装,返回位置分布的量子态 def quantumWalk(X0, X1, Y0, Y1, steps): initPositionMap = zeros([1, 1, 4, 4], complex) initPositionMap[0][0] = initQuanStat(X0, X1, Y0, Y1) coin = hadamardCoin() for step in range(1, steps + 1): positionMap = initPositionMap coinMap = coinOperator(positionMap, coin) initPositionMap = shiftOperator(coinMap, step) return initPositionMap # 计算QW的位置分布 def QWDistribution(X0, X1, Y0, Y1, steps): positionMap = quantumWalk(X0, X1, Y0, Y1, steps) dimension = shape(positionMap)[0] distribution = zeros([dimension, dimension], dtype=float) sum = 0.0 for i in range(dimension): for j in range(dimension): distribution[i][j] = float((positionMap[i][j][0][0].real ** 2 + positionMap[i][j][0][0].imag ** 2 + \ positionMap[i][j][1][0].real ** 2 + positionMap[i][j][1][0].imag ** 2 + \ positionMap[i][j][0][1].real ** 2 + positionMap[i][j][0][1].imag ** 2 + \ positionMap[i][j][1][1].real ** 2 + positionMap[i][j][1][1].imag ** 2 + \ positionMap[i][j][2][2].real ** 2 + positionMap[i][j][2][2].imag ** 2 + \ positionMap[i][j][3][2].real ** 2 + positionMap[i][j][3][2].imag ** 2 + \ positionMap[i][j][2][3].real ** 2 + positionMap[i][j][2][3].imag ** 2 + \ positionMap[i][j][3][3].real ** 2 + positionMap[i][j][3][3].imag ** 2)) sum += distribution[i][j] return distribution / sum def writeQWtoArray(distribution, filename): distrFlie = open(filename, 'w+') for x in range(shape(distribution)[0]): for y in range(shape(distribution)[1]): distrFlie.write(str(distribution[x][y]) + '\t') distrFlie.write('\n') distrFlie.close() def writeQWtoList(distribution, filename): distrFlie = open('Data/' + filename, 'w+') for x in range(shape(distribution)[0]): for y in range(shape(distribution)[1]): distrFlie.write(str(x) + '\t' + str(y) + '\t' + str(distribution[x][y]) + '\n') distrFlie.close() def Plot2D(qw, steps): plt.figure(1) ax1 = plt.subplot(111) plt.sca(ax1) plt.title('2D distribution of %s steps Quantum Walk with hadamard coin' % steps) plt.xlabel('X Position (started in center)') plt.ylabel('Y Position (started in center)') plt.imshow(qw) plt.savefig('Fig/QWM_' + str(steps) + '.png') plt.close() def PlotX(qw, Y): qwX = qw[:][Y] plt.plot(qwX) plt.title('a Slice of 2D distribution of Quantum Walk') plt.xlabel('Position(started in %s)' % Y) plt.ylabel('Probability') plt.show()
Python
2D
daihui/QuantumWalkSimulation
QWithDiffShiftTest.py
.py
3,092
86
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'levitan' from numpy import * from matplotlib import pyplot as plt import QWithDiffShift as QDS # distribution=QDS.QWDistribution(1/sqrt(2),1j/sqrt(2),700,1) # QDS.PlotX(distribution) def QDSPlot(X0, X1, steps, shiftGateNum): for step in range(1, steps + 1): distributionQDS = QDS.QWDistribution(X0, X1, step, shiftGateNum) distributionQW = QDS.QWDistribution(X0, X1, 7 * step, 1) QDS.PlotComp(distributionQDS, distributionQW, step, 'QDS-VS-QW-H') def QDSCPlot(X0, X1, steps, shiftGateNum, node): for step in range(1, steps + 1): distribution = QDS.QWCicleDistribution(X0, X1, step, shiftGateNum, node) distributionTrans = QDS.ciclePosiTrans(distribution, step, shiftGateNum) QDS.PlotX(distributionTrans, step, 'QDS_CT') # QDSPlot(1/sqrt(2),1j/sqrt(2),15,3) # QDSCPlot(1/sqrt(2),1j/sqrt(2),15,3,50) def QDSCiclePlot(X0, X1, steps, shiftGateNum, node): for step in range(1, steps + 1): distribution = QDS.QWCicleDistribution(X0, X1, step, shiftGateNum, node) distributionTrans = QDS.ciclePosiTrans(distribution, step, shiftGateNum) QDS.PlotCicle(distributionTrans, step, shiftGateNum, 'QDSCicle_K4_H_') def QDSCicleContourfPlot(Filename, walkSteps, PiSteps, node, point): # x,y=ogrid[0:50:PiSteps,1:200:walkSteps] x = arange(0, 2 * pi, 2 * pi / PiSteps) y = arange(0, walkSteps, 1) v = linspace(0, 1, 50, endpoint=True) # print x,shape(x) file = open(Filename, 'r') dataList = zeros([walkSteps * PiSteps, node]) i = 0 for line in file.readlines(): for j in range(node): dataList[i][j] = line.split('\t')[2 + j] # print dataList[i] i += 1 # print dataList[2] z = zeros([walkSteps, PiSteps], float) for yi in range(walkSteps): for xi in range(PiSteps): z[yi][xi] = float(dataList[xi * walkSteps + yi][point]) file.close() plt.figure() plt.title('Distribution of %s steps Quantum Walk in Cicle with different phase' % walkSteps) plt.xlabel('Phase') plt.ylabel('Step') plt.contourf(x, y, z, v, cmap=plt.cm.jet) x = plt.colorbar(ticks=v) print x plt.show() # QDSCiclePlot(1, 0, 10, 2, 4) # QDSPlot(1 , 0, 10, 3) # QDS.QWCicleDistrWrite(1, 0, 2000, 3, 8) # QDS.QWCicleWithPhaseDistrWrite(1/sqrt(2), 1/sqrt(2), 400, 2, 5, 0, 2) # QDS.QWCicleWithPhaseLoopDistrWrite(1/sqrt(2), 1j/sqrt(2), 200, 2, 4, pi, 2) # QDS.QWCicleWithPhaseLoopSearch(1/sqrt(2), 1/sqrt(2), 200, 3, 8, pi, 3) # for i in range(51): # QDS.QWCicleWithPhaseLoopSearch(1, 0, 200, 3, 8, 2*pi*i/50, 3) # for i in range(51): # QDS.QWCicleWithPhaseLoopDistrWritePosi(1/sqrt(2), 1/sqrt(2), 200, 2, 4, 2*pi*i/50, 2) # for i in range(51): # QDS.QWCicleWithPhaseDistrWrite(1/sqrt(2), 1/sqrt(2), 200, 2, 5, 2*pi*i/50, 2) # for i in range(51): # QDS.QWCicleWithPhaseSearch(1/sqrt(2), 1/sqrt(2), 200, 2, 4, 2*pi*i/50, 2) QDSCicleContourfPlot('Data/Search mark_0 X00.707106781187_X10.707106781187_2-4_Steps200Aver.txt', 200, 51,4,2)
Python
2D
daihui/QuantumWalkSimulation
classicalRWMat.py
.py
1,888
54
#!/usr/bin/env python #-*- coding: utf-8 -*- __author__ = 'levitan' """ This is a matrix release for 2D classic random walk simulation. 经典随机游走的基本过程:在一个初始位置,投一次coin(随机选择),根据coin的结果, 选择向某一个方向走一步,然后再投一次coin,周而复始。 classicalRanMun():产生一个随机coin classcalWalkerPosition():walker的初始位置,设为(0,0) classicalWalk():根据参数walkNum随机游走walkNum步,返回最后位置walkerPosition classicalRWDistr():重复satNum次随机游走,得到walkerPosition的统计分布 Plot2D():画图函数,画出2D的经典随机游走位置概率分布 """ from numpy import * import random from matplotlib import pyplot as plt def classicalRanNum(): return mat([[random.choice([1,-1])],[random.choice([1,-1])]],int) def classicalWalkerPosition(): return mat([[0],[0]],int) def classicalWalk(walkNum): walkerPosition = classicalWalkerPosition() for i in range(0, walkNum): coin= classicalRanNum() walkerPosition+=coin return walkerPosition def classicalRWDistr(walkNum, matrixNum,satNum): walkerCount = zeros([2 *matrixNum + 1, 2 * matrixNum + 1]) for i in range(0, satNum): walker = classicalWalk(walkNum) walkerCount[int(walker[0])+matrixNum][int(walker[1])+matrixNum] += float(1.0 / satNum) return walkerCount def Plot2D(classcialWalker,steps): plt.figure(1) ax1=plt.subplot(111) plt.sca(ax1) plt.title('2D distribution of %s steps Classical Random Walk' %steps) plt.xlabel('X Position(started in center)') plt.ylabel('Y Position(started in center)') plt.imshow(classcialWalker) plt.savefig('Fig/CRW_' + str(steps) + '.png') plt.close() #for i in range(1,2): # classicalWalker=classicalRWDistr(i*10,100,100000) # Plot2D(classicalWalker,i*10)
Python
2D
daihui/QuantumWalkSimulation
QWithDiffShift.py
.py
25,076
598
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'levitan' """ This is matrix release for 1D quantum walk with different shift simulation(graph). 基本过程:有一个初始量子态,coin是一个幺正变换,一次游走即coin对量子态变换一次 然后根据量子态walk一步,或几步(根据shift而定)得到一个位置概率分布,如此反复。 """ from numpy import * from matplotlib import pyplot as plt import time import pylab as py from mpl_toolkits.mplot3d import Axes3D from matplotlib import animation # ------------------------------------------- # Quantum walk in line with different shift # ------------------------------------------- # 初始化量子态,是一个2*1维矩阵 def initQuanStat(X0, X1): initQuanStat = zeros([2, 1], complex) initQuanStat[0][0] = X0 initQuanStat[1][0] = X1 return initQuanStat # 定义1D hadamard coin def hadamardCoin(): hadamardCoin = array([[1 / sqrt(2), 1 / sqrt(2)], [1 / sqrt(2), -1 / sqrt(2)]], complex) return hadamardCoin # 定义1D phase coin def phaseCoin(Psi): phaseCoin = array([[1, 0], [0, exp(1j * Psi)]], complex) return phaseCoin # 根据shift的最大值和走了的步数定义空位置矩阵 def initPositionMap(steps, shiftNum, shiftGateNum): stepNum = 0 for j in range(0, shiftGateNum): stepNum += power(2, j) dimension = stepNum * (steps - 1) + 1 for i in range(0, shiftNum): dimension += power(2, i) positionMap = zeros([dimension, 2, 1], complex) return positionMap # 对量子态经行coin变换 def coinOperator(coin, positionMap): dimension = shape(positionMap)[0] for i in range(dimension): positionMap[i] = dot(coin, positionMap[i]) return positionMap # 根据量子态进行位置变换,相当于一次walk def shiftOperator(positionMap, step, shiftGateNum): for shiftNum in range(1, shiftGateNum + 1): newPositionMap = initPositionMap(step, shiftNum, shiftGateNum) coin = hadamardCoin() coinMap = coinOperator(coin, positionMap) for i in range(shape(coinMap)[0]): newPositionMap[i][0][0] += coinMap[i][0][0] newPositionMap[i + power(2, shiftNum - 1)][1][0] += coinMap[i][1][0] positionMap = newPositionMap return newPositionMap # quantum walk 的整体封装,返回位置分布的量子态 def quantumWalk(X0, X1, steps, shiftGateNum): initPositionMap = zeros([1, 2, 1], complex) initPositionMap[0] = initQuanStat(X0, X1) for step in range(1, steps + 1): positionMap = initPositionMap initPositionMap = shiftOperator(positionMap, step, shiftGateNum) return initPositionMap # 计算QW的位置分布 def QWDistribution(X0, X1, steps, shiftGateNum): positionMap = quantumWalk(X0, X1, steps, shiftGateNum) dimension = shape(positionMap)[0] distribution = zeros([dimension], dtype=float) sum = 0.0 for i in range(dimension): distribution[i] = float(positionMap[i][0][0].real ** 2 + positionMap[i][0][0].imag ** 2 + \ positionMap[i][1][0].real ** 2 + positionMap[i][1][0].imag ** 2) sum += distribution[i] print('sum: %s') % sum return distribution # 将结果写到文本文档 def writeQWtoArray(distribution): Filename = 'Data/' + time.strftime('%Y%m%d-%H-%M-%S') + '.txt' distrFlie = open(Filename, 'w+') for x in range(shape(distribution)[0]): distrFlie.write(str(distribution[x]) + '\n') distrFlie.close() # 画出位置概率分布图 def PlotX(distribution, step, figName): plt.plot(distribution) plt.title('The Distribution of %s Quantum Walk with Different Shift') % step plt.xlabel('Started from the 0') plt.ylabel('Probability') # plt.show() plt.savefig('Fig/' + str(figName) + str(step) + '.png') plt.close() # 画出QDS与QW的概率分布对比图 def PlotComp(distributionQDS, distributionQW, step, figName): QDS, = plt.plot(distributionQDS, 'r') QW, = plt.plot(distributionQW, 'b') plt.axis([0, 7 * step, 0, 0.27]) plt.legend([QDS, QW, ], ['QDS', 'QW']) plt.title('The Compare between QDS and QW') plt.xlabel('X Position (started from the center)') plt.ylabel('Probability') # plt.show() plt.savefig('Fig/' + str(figName) + str(step) + '.png') plt.close() # ------------------------------------------- # Quantum walk in cicle with different shift # ------------------------------------------- def initQuanStatAverPosiCicle(X0, X1, Node): initQuanStat = zeros([Node, 2, 1], complex) for node in range(Node): initQuanStat[node][0][0] = X0 * 1 / sqrt(Node) initQuanStat[node][1][0] = X1 * 1 / sqrt(Node) return initQuanStat def positionCicleMap(node): positionCicleMap = zeros([node, 2, 1], complex) return positionCicleMap # 根据量子态进行位置变换,相当于一次walk def shiftCicleOperator(positionMap, step, shiftGateNum, node): for shiftNum in range(1, shiftGateNum + 1): newPositionMap = positionCicleMap(node) coin = hadamardCoin() coinMap = coinOperator(coin, positionMap) for i in range(node): newPositionMap[i][0][0] += coinMap[i][0][0] if (i + power(2, shiftNum - 1) >= node): newPositionMap[i + power(2, shiftNum - 1) - node][1][0] += coinMap[i][1][0] # print('loop') else: newPositionMap[i + power(2, shiftNum - 1)][1][0] += coinMap[i][1][0] positionMap = newPositionMap return newPositionMap # 加入phase coin 版本, 修正移位操作,实现complete graph def shiftCicleWithPhaseOperator(positionMap, step, shiftGateNum, node, Psi, phaseGate): # 先整体走一步 moveOne = positionMap.copy() for i in range(1, node): positionMap[i] = moveOne[i - 1] positionMap[0] = moveOne[node - 1] # 根据延时门再各自走对应步数 for shiftNum in range(1, shiftGateNum + 1): newPositionMap = positionCicleMap(node) HadamardCoin = hadamardCoin() PhaseCoin = phaseCoin(Psi) coinMap = coinOperator(HadamardCoin, positionMap) if shiftNum == phaseGate: newMap = coinMap.copy() coinMap = coinOperator(PhaseCoin, newMap) print 'gate:%s phase coin' % shiftNum for i in range(node): newPositionMap[i][0][0] += coinMap[i][0][0] if (i + power(2, shiftNum - 1) >= node): newPositionMap[i + power(2, shiftNum - 1) - node][1][0] += coinMap[i][1][0] # print('loop') else: newPositionMap[i + power(2, shiftNum - 1)][1][0] += coinMap[i][1][0] positionMap = newPositionMap return newPositionMap # phase coin ,complete graph with loop def shiftCicleWithPhaseLoopOperator(positionMap, step, shiftGateNum, node, Psi, phaseGate): # 根据延时门各自走对应步数 for shiftNum in range(1, shiftGateNum + 1): newPositionMap = positionCicleMap(node) HadamardCoin = hadamardCoin() PhaseCoin = phaseCoin(Psi) coinMap = coinOperator(HadamardCoin, positionMap) if shiftNum == phaseGate: newMap = coinMap.copy() coinMap = coinOperator(PhaseCoin, newMap) print 'gate:%s phase coin' % shiftNum for i in range(node): newPositionMap[i][0][0] += coinMap[i][0][0] if (i + power(2, shiftNum - 1) >= node): newPositionMap[i + power(2, shiftNum - 1) - node][1][0] += coinMap[i][1][0] # print('loop') else: newPositionMap[i + power(2, shiftNum - 1)][1][0] += coinMap[i][1][0] positionMap = newPositionMap return newPositionMap # search position with marked coin ,complete graph with loop for 2 gate,4 node def shiftCicleWithPhaseLoopSearchOperator(positionMap, step, shiftGateNum, node, Psi, phaseGate): # 根据延时门各自走对应步数 for shiftNum in range(1, shiftGateNum + 1): newPositionMap = positionCicleMap(node) HadamardCoin = hadamardCoin() # PhaseCoin = phaseCoin(Psi) coinMap = coinOperator(HadamardCoin, positionMap) if shiftNum == phaseGate: # print 'gate:%s phase coin' % shiftNum newPositionMap[0][0][0] += coinMap[0][0][0] newPositionMap[4][1][0] += coinMap[0][1][0] * exp(1j * Psi) newPositionMap[4][0][0] += coinMap[4][0][0] newPositionMap[0][1][0] += coinMap[4][1][0] * exp(1j * Psi) for i in range(1, node): if i == 4: print i else: newPositionMap[i][0][0] += coinMap[i][0][0] if (i + power(2, shiftNum - 1) >= node): newPositionMap[i + power(2, shiftNum - 1) - node][1][0] += coinMap[i][1][0] # print('loop') else: newPositionMap[i + power(2, shiftNum - 1)][1][0] += coinMap[i][1][0] else: for i in range(node): newPositionMap[i][0][0] += coinMap[i][0][0] if (i + power(2, shiftNum - 1) >= node): newPositionMap[i + power(2, shiftNum - 1) - node][1][0] += coinMap[i][1][0] # print('loop') else: newPositionMap[i + power(2, shiftNum - 1)][1][0] += coinMap[i][1][0] positionMap = newPositionMap return newPositionMap # search position with marked point 0,实现complete graph def shiftCicleWithPhaseSearchOperator(positionMap, step, shiftGateNum, node, Psi, phaseGate): # 先整体走一步 moveOne = positionMap.copy() for i in range(1, node): positionMap[i] = moveOne[i - 1] positionMap[0] = moveOne[node - 1] # 根据延时门再各自走对应步数 for shiftNum in range(1, shiftGateNum + 1): newPositionMap = positionCicleMap(node) HadamardCoin = hadamardCoin() # PhaseCoin = phaseCoin(Psi) coinMap = coinOperator(HadamardCoin, positionMap) for i in range(node): newPositionMap[i][0][0] += coinMap[i][0][0] if (i + power(2, shiftNum - 1) >= node): newPositionMap[i + power(2, shiftNum - 1) - node][1][0] += coinMap[i][1][0] # print('loop') else: newPositionMap[i + power(2, shiftNum - 1)][1][0] += coinMap[i][1][0] positionMap = newPositionMap # 标记点0,附加一个Psi的相位 newPositionMap[0] = newPositionMap[0] * exp(1j * Psi) return newPositionMap # quantum walk 的整体封装,返回位置分布的量子态 def quantumWalkCicle(X0, X1, steps, shiftGateNum, node): print 'begin' initPositionMap = zeros([node, 2, 1], complex) initPositionMap[0] = initQuanStat(X0, X1) for step in range(1, steps + 1): positionMap = initPositionMap initPositionMap = shiftCicleOperator(positionMap, step, shiftGateNum, node) return initPositionMap ''' Release 1, for animate plotting ''' # 计算概率分布 def QWCicleDistribution(X0, X1, steps, shiftGateNum, node): positionMap = quantumWalkCicle(X0, X1, steps, shiftGateNum, node) dimension = shape(positionMap)[0] distribution = zeros([dimension], dtype=float) sum = 0.0 for i in range(dimension): distribution[i] = float(positionMap[i][0][0].real ** 2 + positionMap[i][0][0].imag ** 2 + \ positionMap[i][1][0].real ** 2 + positionMap[i][1][0].imag ** 2) sum += distribution[i] print('sum: %s') % sum return distribution ''' Release 2 : for write data to txt file ''' # quantum walk in cycle graph release for write data to txt file(直接将每一步的态与分布写到文件保存) def QWCicleDistrWrite(X0, X1, steps, shiftGateNum, node): print 'begin' initPositionMap = zeros([node, 2, 1], complex) initPositionMap[0] = initQuanStat(X0, X1) DsitriFilename = 'Data/' + time.strftime('%Y%m%d-%H-%M-%S_') + 'Position' + str(shiftGateNum) + \ str(node) + str(steps) + '.txt' StateFilename = 'Data/' + time.strftime('%Y%m%d-%H-%M-%S_') + 'State' + str(shiftGateNum) + \ str(node) + str(steps) + '.txt' distrFile = open(DsitriFilename, 'w+') stateFile = open(StateFilename, 'w+') for step in range(1, steps + 1): print 'step: %s' % step positionMap = initPositionMap initPositionMap = shiftCicleOperator(positionMap, step, shiftGateNum, node) dimension = shape(initPositionMap)[0] distribution = zeros([dimension], dtype=float) sum = 0.0 for i in range(dimension): distribution[i] = float(initPositionMap[i][0][0].real ** 2 + initPositionMap[i][0][0].imag ** 2 + \ initPositionMap[i][1][0].real ** 2 + initPositionMap[i][1][0].imag ** 2) sum += distribution[i] stateFile.write(str(initPositionMap[i][0][0]) + str(initPositionMap[i][1][0]) + '\t') distrFile.write(str(distribution[i]) + '\t') print('sum: %s') % sum distrFile.write('\n') stateFile.write('\n') stateFile.close() distrFile.close() print 'finish' ''' Release 3 : add phase coin and modified for complete graph ''' # quantum walk in cycle graph release for phase coin (添加phase coin,对shift operator进行了修正) def QWCicleWithPhaseDistrWrite(X0, X1, steps, shiftGateNum, node, Psi, gate): print 'begin' initPositionMap = zeros([node, 2, 1], complex) initPositionMap[0] = initQuanStat(X0, X1) # initPositionMap = initQuanStatAverPosiCicle(X0, X1,node) PositionPsiFilename = 'Data/K5_X0' + str(X0) + '_X1' + str(X1) + '_' + str(shiftGateNum) + '-' + str( node) + '_Steps' + str(steps) + '.txt' PosiFile = open(PositionPsiFilename, 'a') # DsitriFilename = 'Data/' + time.strftime('%Y%m%d-%H-%M-%S') + '_Position_' + str(shiftGateNum) + \ # str(node) + str(steps) + '.txt' # StateFilename = 'Data/' + time.strftime('%Y%m%d-%H-%M-%S') + '_State_' + str(shiftGateNum) + \ # str(node) + str(steps) + '.txt' # distrFile = open(DsitriFilename, 'w+') # stateFile = open(StateFilename, 'w+') # infoS = 'State: X0 %s X1 %s, steps: %s, shiftGateNum: %s, node: %s, Psi: %s, gate: %s\n' % ( # X0, X1, steps, shiftGateNum, node, Psi, gate) # infoD = 'State: X0 %s X1 %s, steps: %s, shiftGateNum: %s, node: %s, Psi: %s, gate: %s \n' % ( # X0, X1, steps, shiftGateNum, node, Psi, gate) # stateFile.write(infoS) # distrFile.write(infoD) for step in range(1, steps + 1): print 'step: %s' % step positionMap = initPositionMap initPositionMap = shiftCicleWithPhaseOperator(positionMap, step, shiftGateNum, node, Psi, gate) dimension = shape(initPositionMap)[0] distribution = zeros([dimension], dtype=float) sum = 0.0 PosiFile.write(str(Psi) + '\t') PosiFile.write(str(step) + '\t') for i in range(dimension): distribution[i] = float(initPositionMap[i][0][0].real ** 2 + initPositionMap[i][0][0].imag ** 2 + \ initPositionMap[i][1][0].real ** 2 + initPositionMap[i][1][0].imag ** 2) sum += distribution[i] PosiFile.write(str(distribution[i]) + '\t') # stateFile.write(str(initPositionMap[i][0][0]) + str(initPositionMap[i][1][0]) + '\t') # distrFile.write(str(distribution[i]) + '\t') PosiFile.write('\n') print('sum: %s') % sum # distrFile.write('\n') # stateFile.write('\n') # stateFile.close() # distrFile.close() PosiFile.close() print 'finish' ''' Release 4 : add phase coin and modified for complete graph with loop ''' # quantum walk in cycle graph with loop release for phase coin def QWCicleWithPhaseLoopDistrWrite(X0, X1, steps, shiftGateNum, node, Psi, gate): print 'begin' initPositionMap = zeros([node, 2, 1], complex) initPositionMap[0] = initQuanStat(X0, X1) #initPositionMap=initQuanStatAverPosiCicle(X0,X1,node) DsitriFilename = 'Data/' + time.strftime('%Y%m%d-%H-%M-%S') + '_Position_' + str(shiftGateNum) + \ str(node) + str(steps) + '.txt' StateFilename = 'Data/' + time.strftime('%Y%m%d-%H-%M-%S') + '_State_' + str(shiftGateNum) + \ str(node) + str(steps) + '.txt' distrFile = open(DsitriFilename, 'w+') stateFile = open(StateFilename, 'w+') infoS = 'State: X0 %s X1 %s, steps: %s, shiftGateNum: %s, node: %s, Psi: %s, gate: %s\n' % ( X0, X1, steps, shiftGateNum, node, Psi, gate) infoD = 'State: X0 %s X1 %s, steps: %s, shiftGateNum: %s, node: %s, Psi: %s, gate: %s \n' % ( X0, X1, steps, shiftGateNum, node, Psi, gate) stateFile.write(infoS) distrFile.write(infoD) for step in range(1, steps + 1): print 'step: %s' % step positionMap = initPositionMap initPositionMap = shiftCicleWithPhaseLoopOperator(positionMap, step, shiftGateNum, node, Psi, gate) dimension = shape(initPositionMap)[0] distribution = zeros([dimension], dtype=float) sum = 0.0 for i in range(dimension): distribution[i] = float(initPositionMap[i][0][0].real ** 2 + initPositionMap[i][0][0].imag ** 2 + \ initPositionMap[i][1][0].real ** 2 + initPositionMap[i][1][0].imag ** 2) sum += distribution[i] stateFile.write(str(initPositionMap[i][0][0]) + str(initPositionMap[i][1][0]) + '\t') distrFile.write(str(distribution[i]) + '\t') print('sum: %s') % sum distrFile.write('\n') stateFile.write('\n') stateFile.close() distrFile.close() print 'finish' ''' Release 5 : add phase coin and modified for complete graph with loop, write position probability file with Psi ''' # quantum walk in cycle graph with loop release for phase coin def QWCicleWithPhaseLoopDistrWritePosi(X0, X1, steps, shiftGateNum, node, Psi, gate): print 'begin' initPositionMap = zeros([node, 2, 1], complex) # initPositionMap[0] = initQuanStat(X0, X1) initPositionMap = initQuanStatAverPosiCicle(X0, X1, node) PositionPsiFilename = 'Data/Loop_X0' + str(X0) + '_X1' + str(X1) + '_' + str(shiftGateNum) + '-' + str( node) + '_Steps' + str(steps) + 'Aver.txt' PosiFile = open(PositionPsiFilename, 'a') for step in range(1, steps + 1): print 'step: %s' % step positionMap = initPositionMap initPositionMap = shiftCicleWithPhaseLoopOperator(positionMap, step, shiftGateNum, node, Psi, gate) dimension = shape(initPositionMap)[0] distribution = zeros([dimension], dtype=float) sum = 0.0 for i in range(dimension): distribution[i] = float(initPositionMap[i][0][0].real ** 2 + initPositionMap[i][0][0].imag ** 2 + \ initPositionMap[i][1][0].real ** 2 + initPositionMap[i][1][0].imag ** 2) sum += distribution[i] if i == 0: PosiFile.write(str(Psi) + '\t') PosiFile.write(str(step) + '\t') PosiFile.write(str(distribution[i]) + '\n') print('sum: %s') % sum PosiFile.close() print 'finish' ''' Release 6 : Search one position by marked in complete graph with loop ''' # quantum walk search in cycle graph with loop def QWCicleWithPhaseLoopSearch(X0, X1, steps, shiftGateNum, node, Psi, gate): print 'begin' initPositionMap = zeros([node, 2, 1], complex) initPositionMap[0] = initQuanStat(X0, X1) # initPositionMap=initQuanStatAverPosiCicle(X0,X1,node) # DsitriFilename = 'Data/' + time.strftime('%Y%m%d-%H-%M-%S') + '_Search_Position_' + str(shiftGateNum) + \ # str(node) + str(steps) + '.txt' # StateFilename = 'Data/' + time.strftime('%Y%m%d-%H-%M-%S') + '_Search_State_' + str(shiftGateNum) + \ # str(node) + str(steps) + '.txt' # distrFile = open(DsitriFilename, 'w+') # stateFile = open(StateFilename, 'w+') # infoS = 'Search State: X0 %s X1 %s, steps: %s, shiftGateNum: %s, node: %s, Psi: %s, gate: %s\n' % ( # X0, X1, steps, shiftGateNum, node, Psi, gate) # infoD = 'Search State: X0 %s X1 %s, steps: %s, shiftGateNum: %s, node: %s, Psi: %s, gate: %s \n' % ( # X0, X1, steps, shiftGateNum, node, Psi, gate) # stateFile.write(infoS) # distrFile.write(infoD) PositionPsiFilename = 'Data/Loop_Search_X0' + str(X0) + '_X1' + str(X1) + '_' + str(shiftGateNum) + '-' + str( node) + '_Steps' + str(steps) + '.txt' PosiFile = open(PositionPsiFilename, 'a') for step in range(1, steps + 1): print 'step: %s' % step positionMap = initPositionMap initPositionMap = shiftCicleWithPhaseLoopSearchOperator(positionMap, step, shiftGateNum, node, Psi, gate) dimension = shape(initPositionMap)[0] distribution = zeros([dimension], dtype=float) sum = 0.0 for i in range(dimension): distribution[i] = float(initPositionMap[i][0][0].real ** 2 + initPositionMap[i][0][0].imag ** 2 + \ initPositionMap[i][1][0].real ** 2 + initPositionMap[i][1][0].imag ** 2) sum += distribution[i] if i == 1: PosiFile.write(str(Psi) + '\t') PosiFile.write(str(step) + '\t') PosiFile.write(str(distribution[i]) + '\n') # stateFile.write(str(initPositionMap[i][0][0]) + str(initPositionMap[i][1][0]) + '\t') # distrFile.write(str(distribution[i]) + '\t') print('sum: %s') % sum # distrFile.write('\n') # stateFile.write('\n') # stateFile.close() # distrFile.close() PosiFile.close() print 'finish' ''' Release 7 : Search one position by marked in complete graph ''' # quantum walk in cycle graph release for phase coin (添加phase coin,对shift operator进行了修正) def QWCicleWithPhaseSearch(X0, X1, steps, shiftGateNum, node, Psi, gate): print 'begin' initPositionMap = zeros([node, 2, 1], complex) # initPositionMap[0] = initQuanStat(X0, X1) initPositionMap = initQuanStatAverPosiCicle(X0, X1, node) PositionPsiFilename = 'Data/Search mark_0 X0' + str(X0) + '_X1' + str(X1) + '_' + str(shiftGateNum) + '-' + str( node) + '_Steps' + str(steps) + 'Aver.txt' PosiFile = open(PositionPsiFilename, 'a') for step in range(1, steps + 1): print 'step: %s' % step positionMap = initPositionMap initPositionMap = shiftCicleWithPhaseSearchOperator(positionMap, step, shiftGateNum, node, Psi, gate) dimension = shape(initPositionMap)[0] distribution = zeros([dimension], dtype=float) sum = 0.0 PosiFile.write(str(Psi) + '\t') PosiFile.write(str(step) + '\t') for i in range(dimension): distribution[i] = float(initPositionMap[i][0][0].real ** 2 + initPositionMap[i][0][0].imag ** 2 + \ initPositionMap[i][1][0].real ** 2 + initPositionMap[i][1][0].imag ** 2) sum += distribution[i] PosiFile.write(str(distribution[i]) + '\t') print('sum: %s') % sum PosiFile.write('\n') PosiFile.close() print 'finish' # 对位置列表进行位移,使原点保持不变 #TODO 位置变换有点问题,暂时不用 def ciclePosiTrans(positionMap, steps, shiftGateNum): node = shape(positionMap)[0] positionMapTrans = zeros([node], float) initNode = (power(2, shiftGateNum) - 1) * steps % node for i in range(node): positionMapTrans[i] = positionMap[(initNode + i) % node] return positionMapTrans # 画出2D位置分布图 def PlotCicle(distribution, steps, shiftGateNum, figName): node = shape(distribution)[0] radius = 1 x = zeros([node], float) y = zeros([node], float) for i in range(node): x[i] = sin(i * 2 * math.pi / node) * radius y[i] = cos(i * 2 * math.pi / node) * radius plt.figure(1, figsize=(20, 9)) ax1 = plt.subplot(121) plt.sca(ax1) plt.title('Distribution of %s steps Quantum Walk in Cicle' % steps) plt.xlabel('X Position') plt.ylabel('Y Position') # plt.imshow(positionMap) # plt.axis([0, 2 * int(radius) + 3, 0, 2 * int(radius) + 3]) # plt.grid(True) plt.scatter(x, y, distribution * 2000, c='r', marker='o') plt.axis([-1.5, 1.5, -1.5, 1.5]) plt.subplot(122) plt.plot(distribution) plt.axis([0, node - 1, 0, 1]) plt.title('Distribution of %s steps QW with Different Shift' % steps) plt.xlabel('Started from 0') plt.ylabel('Probability') # plt.show() plt.savefig('Fig/' + str(figName) + str(steps) + '_' + str(shiftGateNum) + '.png') plt.close()
Python
2D
daihui/QuantumWalkSimulation
quantumRW.py
.py
7,551
163
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'levitan' from numpy import * from matplotlib import pyplot as plt import copy dimension = 1 def initQuantumStateList(X0, X1, Y0, Y1, totalSteps): initquantumStateList = zeros([2 * totalSteps + 1, 2 * totalSteps + 1, 2, 2], dtype=complex) initquantumStateList[totalSteps][totalSteps][0][0] = complex(X0) initquantumStateList[totalSteps][totalSteps][0][1] = complex(X1) initquantumStateList[totalSteps][totalSteps][1][0] = complex(Y0) initquantumStateList[totalSteps][totalSteps][1][1] = complex(Y1) return initquantumStateList # print quantumState(1,1,0,0,1,1,0,0) def hadamardCoin(quantumStateList, totalSteps): global dimension for x in range(dimension): for y in range(dimension): tempState = zeros([2, 2], dtype=complex) tempState = copy.deepcopy( quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y]) quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][0][ 0] = complex((tempState[0][0] + tempState[0][1]) / sqrt(2)) quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][0][ 1] = complex((tempState[0][0] - tempState[0][1]) / sqrt(2)) quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][1][ 0] = complex((tempState[1][0] + tempState[1][1]) / sqrt(2)) quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][1][ 1] = complex((tempState[1][0] - tempState[1][1]) / sqrt(2)) # print quantumStateList return quantumStateList # qs=quantumState(0,1,0,0,0,1,0,0) # print qs # print hadamardCoin(qs) def shiftOperator(quantumStateList, totalSteps): global dimension newQuanStatList = zeros([2 * totalSteps + 1, 2 * totalSteps + 1, 2, 2], dtype=complex) for x in range(dimension): for y in range(dimension): newQuanStat1 = zeros([2, 2], dtype=complex) newQuanStat1[0][0] = \ quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][0][0] newQuanStat1[0][1] = 0.0 newQuanStat1[1][0] = \ quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][1][0] newQuanStat1[1][1] = 0.0 newQuanStatList[totalSteps - (dimension - 1) / 2 + x - 1][ totalSteps - (dimension - 1) / 2 + y - 1] += (newQuanStat1 / sqrt(2)) newQuanStat2 = zeros([2, 2], dtype=complex) newQuanStat2[0][0] = \ quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][0][0] newQuanStat2[0][1] = 0.0 newQuanStat2[1][0] = 0.0 newQuanStat2[1][1] = \ quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][1][1] newQuanStatList[totalSteps - (dimension - 1) / 2 + x - 1][ totalSteps - (dimension - 1) / 2 + y + 1] += (newQuanStat2 / sqrt(2)) newQuanStat3 = zeros([2, 2], dtype=complex) newQuanStat3[0][0] = 0.0 newQuanStat3[0][1] = \ quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][0][1] newQuanStat3[1][0] = 0.0 newQuanStat3[1][1] = \ quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][1][1] newQuanStatList[totalSteps - (dimension - 1) / 2 + x + 1][ totalSteps - (dimension - 1) / 2 + y + 1] += (newQuanStat3 / sqrt(2)) newQuanStat4 = zeros([2, 2], dtype=complex) newQuanStat4[0][0] = 0.0 newQuanStat4[0][1] = \ quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][0][1] newQuanStat4[1][0] = \ quantumStateList[totalSteps - (dimension - 1) / 2 + x][totalSteps - (dimension - 1) / 2 + y][1][0] newQuanStat4[1][1] = 0.0 newQuanStatList[totalSteps - (dimension - 1) / 2 + x + 1][ totalSteps - (dimension - 1) / 2 + y - 1] += (newQuanStat4 / sqrt(2)) dimension += 2 return newQuanStatList def quantumWalker(X0, X1, Y0, Y1, totalSteps,plotSteps): global dimension initStateList = initQuantumStateList(X0, X1, Y0, Y1, totalSteps) newQuanStatList = zeros([2 * totalSteps + 1, 2 * totalSteps + 1, 2, 2], dtype=complex) shiftQuanStatList = initStateList for i in range(1,totalSteps+1): newQuanStatList = hadamardCoin(shiftQuanStatList, totalSteps) shiftQuanStatList = shiftOperator(newQuanStatList, totalSteps) if (i!=0)&(i%plotSteps == 0) : print dimension print i plotQW=distriQW(shiftQuanStatList,dimension,totalSteps) Plot2D(plotQW,i) dimension = 1 return shiftQuanStatList def distriQW(quantumWalkerList, dim,totalSteps): distribution = zeros([2 * totalSteps + 1, 2 * totalSteps + 1], dtype=float) sum = 0.0 # print quantumWalkerList for x in range(dim): for y in range(dim): distribution[totalSteps-(dim-1)/2+x][totalSteps-(dim-1)/2 +y] += float( abs((quantumWalkerList[totalSteps-(dim-1)/2+x][totalSteps-(dim-1)/2 +y][0][0].real ** 2 + quantumWalkerList[totalSteps-(dim-1)/2+x][totalSteps-(dim-1)/2 +y][0][0].imag ** 2)) + abs((quantumWalkerList[totalSteps-(dim-1)/2+x][totalSteps-(dim-1)/2 +y][0][1].real ** 2 + quantumWalkerList[totalSteps-(dim-1)/2+x][totalSteps-(dim-1)/2 +y][0][1].imag ** 2)) + abs((quantumWalkerList[totalSteps-(dim-1)/2+x][totalSteps-(dim-1)/2 +y][1][0].real ** 2 + quantumWalkerList[totalSteps-(dim-1)/2+x][totalSteps-(dim-1)/2 +y][1][0].imag ** 2)) + abs((quantumWalkerList[totalSteps-(dim-1)/2+x][totalSteps-(dim-1)/2 +y][1][1].real ** 2 + quantumWalkerList[totalSteps-(dim-1)/2+x][totalSteps-(dim-1)/2 +y][1][1].imag ** 2))) sum += distribution[totalSteps-dim +x][totalSteps-dim +y] print('Sum= %s' % sum) return distribution / sum def writeQWtoArray(distribution, filename): distrFlie = open(filename, 'w+') for x in range(shape(distribution)[0]): for y in range(shape(distribution)[1]): distrFlie.write(str(distribution[x][y]) + '\t') distrFlie.write('\n') distrFlie.close() def writeQWtoList(distribution, filename): distrFlie = open('Data/' + filename, 'w+') for x in range(shape(distribution)[0]): for y in range(shape(distribution)[1]): distrFlie.write(str(x) + '\t' + str(y) + '\t' + str(distribution[x][y]) + '\n') distrFlie.close() def Plot2D(qw,steps): plt.figure(1) ax1 = plt.subplot(111) plt.sca(ax1) plt.title('2D distribution of %s steps Quantum Walk with hadamard coin' %steps) plt.xlabel('X Position (started in center)') plt.ylabel('Y Position (started in center)') plt.imshow(qw) plt.savefig('Fig/QW_' + str(steps) + '.png') plt.close() def PlotX(qw, Y): qwX = qw[:][Y] plt.plot(qwX) plt.title('a Slice of 2D distribution of Quantum Walk') plt.xlabel('Position(started in %s)' % Y) plt.ylabel('Probability') plt.show()
Python
End of preview. Expand in Data Studio

DATA1: Domain-Specific Code Dataset

Dataset Overview

DATA1 is a large-scale domain-specific code dataset focusing on code samples from interdisciplinary fields such as biology, chemistry, materials science, and related areas. The dataset is collected and organized from GitHub repositories, covering 178 different domain topics with over 1.1 billion lines of code.

Dataset Statistics

  • Total Datasets: 178 CSV files
  • Total Data Size: ~115 GB
  • Total Lines of Code: Over 1.1 billion lines
  • Data Format: CSV (Comma-Separated Values)
  • Encoding: UTF-8

Dataset Structure

Each CSV file corresponds to a specific domain topic, with the naming format dataset_{Topic}.csv, where {Topic} is the domain keyword (e.g., Protein, Drug, Genomics).

Data Field Description

Each CSV file contains the following fields:

Field Name Type Description
keyword String Domain keyword used to identify the domain of the code sample
repo_name String GitHub repository name (format: owner/repo)
file_path String Relative path of the file in the repository
file_extension String File extension (e.g., .py, .java, .cpp)
file_size Integer File size in bytes
line_count Integer Number of lines of code in the file
content String Complete file content
language String Programming language (e.g., Python, Java, C++)

Domain Categories

The dataset covers the following major domain categories:

Biology-Related

  • Molecular Biology: Protein, DNA, RNA, Gene, Enzyme, Receptor, Ligand
  • Cell Biology: Cell_biology, Single_cell, Cell_atlas, Organoid
  • Genomics: Genomics, Genotype, Phenotype, Epigenetics, Metagenomics
  • Transcriptomics: Transcriptomics, Spatial_Transcriptomics, Transcription, Translation
  • Proteomics: Proteomics, Protein_Protein_Interactions, Folding
  • Metabolomics: Metabolomics, Metabolic, Lipidomics, Glycomics
  • Systems Biology: System_biology, Signaling, Pathway, Networks

Chemistry-Related

  • Computational Chemistry: Computational_Chemistry, Quantum_Chemistry, DFT, QM_MM
  • Medicinal Chemistry: Drug, ADMET, QSAR, Docking, Lead_discovery, Lead_optimization
  • Materials Chemistry: Material, Crystal, Conformation, Chemical_space
  • Reaction Chemistry: Reaction, Kinetics, Mechanism, Redox

Medicine and Pharmacology

  • Pharmacology: Pharmacology, Pharmacokinetics, Pharmacogenomics, Pharmacogenetics
  • Medicine: Medicine, Disease, Diagnostics, Pathology, Vaccine
  • Toxicology: Toxicology, Biomarker, Marker

Computational Methods

  • Machine Learning: Transformer, GAN, VAE, Diffusion, Flow_matching, Reinforcement_learning
  • Quantum Computing: Quantum_mechanics, Quantum_biology, Electronic_structure
  • Modeling Methods: Modeling, Multi_scale_modeling, Agent_based_model, Stochastic_modeling
  • Numerical Methods: Monte_Carlo, Finite_element_method, Phase_field_technique

Other Specialized Fields

  • Bioinformatics: Bioinformatics, Cheminformatics, Next_generation_sequencing
  • Bioengineering: Bioengineering, Biotechnology, Biosensors
  • Immunology: Immunology, Antibody, Antigen, Antagonist
  • Virology: Viral, Pandemic, Pathogens, AMR (Antimicrobial Resistance)

Data Source

The data is collected from open-source repositories on GitHub through the following process:

  1. Keyword Search: Search for relevant repositories on GitHub using domain-specific keywords
  2. Repository Filtering: Filter repositories based on relevance scores and code quality
  3. File Extraction: Extract code files from filtered repositories
  4. Categorization: Classify files into corresponding topic datasets based on keywords and domain characteristics

Dataset Characteristics

  1. Wide Domain Coverage: Covers multiple interdisciplinary fields including biology, chemistry, materials science, and medicine
  2. Diverse Code Types: Includes multiple programming languages such as Python, Java, C++, R, and MATLAB
  3. Large Scale: Over 1.1 billion lines of code with a total data size of 115 GB
  4. Structured Storage: Each domain topic is stored independently as a CSV file for convenient on-demand usage
  5. Rich Metadata: Contains comprehensive metadata including repository information, file paths, and language types

Usage Guidelines

Data Loading

import pandas as pd

# Load dataset for a specific domain
df = pd.read_csv('dataset_Protein.csv')

# View basic dataset information
print(f"Dataset size: {len(df)} files")
print(f"Programming language distribution: {df['language'].value_counts()}")
print(f"File type distribution: {df['file_extension'].value_counts()}")

Data Filtering

# Filter by programming language
python_files = df[df['language'] == 'Python']

# Filter by file size (e.g., files smaller than 100KB)
small_files = df[df['file_size'] < 100000]

# Filter by line count
medium_files = df[(df['line_count'] > 50) & (df['line_count'] < 1000)]

Domain-Specific Analysis

# Analyze code characteristics for a specific domain
protein_df = pd.read_csv('dataset_Protein.csv')
print(f"Number of code files in Protein domain: {len(protein_df)}")
print(f"Average file size: {protein_df['file_size'].mean():.2f} bytes")
print(f"Average line count: {protein_df['line_count'].mean():.2f} lines")

Important Notes

  1. File Size: Some dataset files are large (up to several GB), please be mindful of memory usage when loading
  2. Encoding: All files use UTF-8 encoding; ensure proper handling of special characters if encountered
  3. Data Quality: Data is sourced from public repositories and may vary in code quality; preprocessing is recommended before use
  4. License Compliance: Please comply with the license requirements of the original repositories when using the data
Downloads last month
22