VLMEvalKit / vlmeval /inference_video.py
Racktic's picture
Upload folder using huggingface_hub
b5beb60 verified
import torch
import torch.distributed as dist
from vlmeval.config import supported_VLM
from vlmeval.utils import track_progress_rich
from vlmeval.smp import *
FAIL_MSG = 'Failed to obtain answer via API.'
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data', type=str, nargs='+', required=True)
parser.add_argument('--model', type=str, nargs='+', required=True)
parser.add_argument('--nproc', type=int, default=4, required=True)
parser.add_argument('--verbose', action='store_true')
args = parser.parse_args()
return args
# Only API model is accepted
def infer_data_api(model, work_dir, model_name, dataset, samples_dict={}, api_nproc=4):
rank, world_size = get_rank_and_world_size()
assert rank == 0 and world_size == 1
dataset_name = dataset.dataset_name
model = supported_VLM[model_name]() if isinstance(model, str) else model
assert getattr(model, 'is_api', False)
indices = list(samples_dict.keys())
structs = [dataset.build_prompt(samples_dict[idx], video_llm=getattr(model, 'VIDEO_LLM', False)) for idx in indices]
packstr = 'pack' if getattr(dataset, 'pack', False) else 'nopack'
if dataset.nframe > 0:
out_file = f'{work_dir}/{model_name}_{dataset_name}_{dataset.nframe}frame_{packstr}_supp.pkl'
else:
out_file = f'{work_dir}/{model_name}_{dataset_name}_{dataset.fps}fps_{packstr}_supp.pkl'
res = load(out_file) if osp.exists(out_file) else {}
structs = [s for i, s in zip(indices, structs) if i not in res or res[i] == FAIL_MSG]
indices = [i for i in indices if i not in res or res[i] == FAIL_MSG]
gen_func = model.generate
structs = [dict(message=struct, dataset=dataset_name) for struct in structs]
if len(structs):
track_progress_rich(gen_func, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices)
res = load(out_file)
return res
def infer_data(model, model_name, work_dir, dataset, out_file, verbose=False, api_nproc=4):
res = load(out_file) if osp.exists(out_file) else {}
rank, world_size = get_rank_and_world_size()
dataset_name = dataset.dataset_name
sample_indices = list(dataset.videos) if getattr(dataset, 'pack', False) else list(dataset.data['index'])
samples = list(dataset.videos) if getattr(dataset, 'pack', False) else list(range(len(dataset.data)))
sample_map = {i: s for i, s in zip(sample_indices, samples)}
sample_indices_sub = sample_indices[rank::world_size]
if np.all([idx in res for idx in sample_indices_sub]):
return model
sample_indices_subrem = [x for x in sample_indices_sub if x not in res]
model = supported_VLM[model_name]() if isinstance(model, str) else model
is_api = getattr(model, 'is_api', False)
if is_api:
assert world_size == 1
supp = infer_data_api(
model=model,
work_dir=work_dir,
model_name=model_name,
dataset=dataset,
samples_dict={k: sample_map[k] for k in sample_indices_subrem},
api_nproc=api_nproc)
for k in sample_indices_subrem:
assert k in supp
res.update(supp)
dump(res, out_file)
return model
assert not getattr(dataset, 'pack', False), 'Current model not supported pack mode!'
for i, idx in tqdm(enumerate(sample_indices_subrem)):
if idx in res:
continue
if getattr(model, 'nframe', None) is not None and getattr(model, 'nframe', 0) > 0:
if dataset.nframe > 0:
if getattr(model, 'nframe', 0) != dataset.nframe:
print(f'{model_name} is a video-llm model, nframe is set to {dataset.nframe}, not using default')
setattr(model, 'nframe', dataset.nframe)
elif getattr(model, 'fps', 0) == 0:
raise ValueError(f'fps is not suitable for {model_name}')
else:
setattr(model, 'nframe', None)
if getattr(model, 'fps', None) is not None and getattr(model, 'fps', 0) > 0:
if dataset.fps > 0:
if getattr(model, 'fps', 0) != dataset.fps:
print(f'{model_name} is a video-llm model, fps is set to {dataset.fps}, not using default')
setattr(model, 'fps', dataset.fps)
elif getattr(model, 'nframe', 0) == 0:
raise ValueError(f'nframe is not suitable for {model_name}')
else:
setattr(model, 'fps', None)
if 'SUB_DATASET' in dataset.data.iloc[sample_map[idx]]:
dataset_name = dataset.data.iloc[sample_map[idx]]['SUB_DATASET']
if hasattr(model, 'use_custom_prompt') and model.use_custom_prompt(dataset_name):
if dataset.nframe == 0:
raise ValueError(f'nframe must be set for custom prompt, fps is not suitable for {model_name}')
struct = model.build_prompt(
dataset.data.iloc[sample_map[idx]], dataset=dataset, video_llm=getattr(model, 'VIDEO_LLM', False)
)
else:
struct = dataset.build_prompt(
sample_map[idx], video_llm=getattr(model, 'VIDEO_LLM', False)
)
response = model.generate(message=struct, dataset=dataset_name)
torch.cuda.empty_cache()
if verbose:
print(response, flush=True)
res[idx] = response
if (i + 1) % 20 == 0:
dump(res, out_file)
res = {k: res[k] for k in sample_indices_sub}
dump(res, out_file)
return model
# A wrapper for infer_data, do the pre & post processing
def infer_data_job_video(
model,
work_dir,
model_name,
dataset,
result_file_name,
verbose=False,
api_nproc=4):
dataset_name = dataset.dataset_name
rank, world_size = get_rank_and_world_size()
result_file = osp.join(work_dir, result_file_name)
# Dump Predictions to Prev File if result file exists
if osp.exists(result_file):
return model
tmpl = osp.join(work_dir, '{}' + f'{world_size}_{osp.splitext(result_file_name)[0]}.pkl')
out_file = tmpl.format(rank)
model = infer_data(
model=model,
model_name=model_name,
work_dir=work_dir,
dataset=dataset,
out_file=out_file,
verbose=verbose,
api_nproc=api_nproc)
if world_size > 1:
dist.barrier()
if rank == 0:
data_all = {}
for i in range(world_size):
data_all.update(load(tmpl.format(i)))
meta = dataset.data
if dataset_name == 'MMBench-Video' and getattr(dataset, 'pack', False):
meta, vstats = dataset.load_pack_answers(data_all)
print(f'Statitics of Pack Video Inference: {vstats}')
else:
for x in meta['index']:
assert x in data_all
meta['prediction'] = [str(data_all[x]) for x in meta['index']]
if 'image' in meta:
meta.pop('image')
dump(meta, result_file)
for i in range(world_size):
os.remove(tmpl.format(i))
return model