|
|
import torch |
|
|
import torch.distributed as dist |
|
|
from vlmeval.config import supported_VLM |
|
|
from vlmeval.utils import track_progress_rich |
|
|
from vlmeval.smp import * |
|
|
|
|
|
FAIL_MSG = 'Failed to obtain answer via API.' |
|
|
|
|
|
|
|
|
def parse_args(): |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument('--data', type=str, nargs='+', required=True) |
|
|
parser.add_argument('--model', type=str, nargs='+', required=True) |
|
|
parser.add_argument('--nproc', type=int, default=4, required=True) |
|
|
parser.add_argument('--verbose', action='store_true') |
|
|
args = parser.parse_args() |
|
|
return args |
|
|
|
|
|
|
|
|
|
|
|
def infer_data_api(model, work_dir, model_name, dataset, samples_dict={}, api_nproc=4): |
|
|
rank, world_size = get_rank_and_world_size() |
|
|
assert rank == 0 and world_size == 1 |
|
|
dataset_name = dataset.dataset_name |
|
|
model = supported_VLM[model_name]() if isinstance(model, str) else model |
|
|
assert getattr(model, 'is_api', False) |
|
|
|
|
|
indices = list(samples_dict.keys()) |
|
|
structs = [dataset.build_prompt(samples_dict[idx], video_llm=getattr(model, 'VIDEO_LLM', False)) for idx in indices] |
|
|
|
|
|
packstr = 'pack' if getattr(dataset, 'pack', False) else 'nopack' |
|
|
if dataset.nframe > 0: |
|
|
out_file = f'{work_dir}/{model_name}_{dataset_name}_{dataset.nframe}frame_{packstr}_supp.pkl' |
|
|
else: |
|
|
out_file = f'{work_dir}/{model_name}_{dataset_name}_{dataset.fps}fps_{packstr}_supp.pkl' |
|
|
res = load(out_file) if osp.exists(out_file) else {} |
|
|
|
|
|
structs = [s for i, s in zip(indices, structs) if i not in res or res[i] == FAIL_MSG] |
|
|
indices = [i for i in indices if i not in res or res[i] == FAIL_MSG] |
|
|
|
|
|
gen_func = model.generate |
|
|
structs = [dict(message=struct, dataset=dataset_name) for struct in structs] |
|
|
|
|
|
if len(structs): |
|
|
track_progress_rich(gen_func, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices) |
|
|
|
|
|
res = load(out_file) |
|
|
return res |
|
|
|
|
|
|
|
|
def infer_data(model, model_name, work_dir, dataset, out_file, verbose=False, api_nproc=4): |
|
|
res = load(out_file) if osp.exists(out_file) else {} |
|
|
rank, world_size = get_rank_and_world_size() |
|
|
dataset_name = dataset.dataset_name |
|
|
|
|
|
sample_indices = list(dataset.videos) if getattr(dataset, 'pack', False) else list(dataset.data['index']) |
|
|
samples = list(dataset.videos) if getattr(dataset, 'pack', False) else list(range(len(dataset.data))) |
|
|
sample_map = {i: s for i, s in zip(sample_indices, samples)} |
|
|
|
|
|
sample_indices_sub = sample_indices[rank::world_size] |
|
|
if np.all([idx in res for idx in sample_indices_sub]): |
|
|
return model |
|
|
sample_indices_subrem = [x for x in sample_indices_sub if x not in res] |
|
|
|
|
|
model = supported_VLM[model_name]() if isinstance(model, str) else model |
|
|
|
|
|
is_api = getattr(model, 'is_api', False) |
|
|
if is_api: |
|
|
assert world_size == 1 |
|
|
supp = infer_data_api( |
|
|
model=model, |
|
|
work_dir=work_dir, |
|
|
model_name=model_name, |
|
|
dataset=dataset, |
|
|
samples_dict={k: sample_map[k] for k in sample_indices_subrem}, |
|
|
api_nproc=api_nproc) |
|
|
for k in sample_indices_subrem: |
|
|
assert k in supp |
|
|
res.update(supp) |
|
|
dump(res, out_file) |
|
|
return model |
|
|
|
|
|
assert not getattr(dataset, 'pack', False), 'Current model not supported pack mode!' |
|
|
for i, idx in tqdm(enumerate(sample_indices_subrem)): |
|
|
if idx in res: |
|
|
continue |
|
|
if getattr(model, 'nframe', None) is not None and getattr(model, 'nframe', 0) > 0: |
|
|
if dataset.nframe > 0: |
|
|
if getattr(model, 'nframe', 0) != dataset.nframe: |
|
|
print(f'{model_name} is a video-llm model, nframe is set to {dataset.nframe}, not using default') |
|
|
setattr(model, 'nframe', dataset.nframe) |
|
|
elif getattr(model, 'fps', 0) == 0: |
|
|
raise ValueError(f'fps is not suitable for {model_name}') |
|
|
else: |
|
|
setattr(model, 'nframe', None) |
|
|
if getattr(model, 'fps', None) is not None and getattr(model, 'fps', 0) > 0: |
|
|
if dataset.fps > 0: |
|
|
if getattr(model, 'fps', 0) != dataset.fps: |
|
|
print(f'{model_name} is a video-llm model, fps is set to {dataset.fps}, not using default') |
|
|
setattr(model, 'fps', dataset.fps) |
|
|
elif getattr(model, 'nframe', 0) == 0: |
|
|
raise ValueError(f'nframe is not suitable for {model_name}') |
|
|
else: |
|
|
setattr(model, 'fps', None) |
|
|
if 'SUB_DATASET' in dataset.data.iloc[sample_map[idx]]: |
|
|
dataset_name = dataset.data.iloc[sample_map[idx]]['SUB_DATASET'] |
|
|
if hasattr(model, 'use_custom_prompt') and model.use_custom_prompt(dataset_name): |
|
|
if dataset.nframe == 0: |
|
|
raise ValueError(f'nframe must be set for custom prompt, fps is not suitable for {model_name}') |
|
|
struct = model.build_prompt( |
|
|
dataset.data.iloc[sample_map[idx]], dataset=dataset, video_llm=getattr(model, 'VIDEO_LLM', False) |
|
|
) |
|
|
else: |
|
|
struct = dataset.build_prompt( |
|
|
sample_map[idx], video_llm=getattr(model, 'VIDEO_LLM', False) |
|
|
) |
|
|
response = model.generate(message=struct, dataset=dataset_name) |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
if verbose: |
|
|
print(response, flush=True) |
|
|
|
|
|
res[idx] = response |
|
|
if (i + 1) % 20 == 0: |
|
|
dump(res, out_file) |
|
|
|
|
|
res = {k: res[k] for k in sample_indices_sub} |
|
|
dump(res, out_file) |
|
|
return model |
|
|
|
|
|
|
|
|
|
|
|
def infer_data_job_video( |
|
|
model, |
|
|
work_dir, |
|
|
model_name, |
|
|
dataset, |
|
|
result_file_name, |
|
|
verbose=False, |
|
|
api_nproc=4): |
|
|
|
|
|
dataset_name = dataset.dataset_name |
|
|
rank, world_size = get_rank_and_world_size() |
|
|
result_file = osp.join(work_dir, result_file_name) |
|
|
|
|
|
if osp.exists(result_file): |
|
|
return model |
|
|
|
|
|
tmpl = osp.join(work_dir, '{}' + f'{world_size}_{osp.splitext(result_file_name)[0]}.pkl') |
|
|
out_file = tmpl.format(rank) |
|
|
|
|
|
model = infer_data( |
|
|
model=model, |
|
|
model_name=model_name, |
|
|
work_dir=work_dir, |
|
|
dataset=dataset, |
|
|
out_file=out_file, |
|
|
verbose=verbose, |
|
|
api_nproc=api_nproc) |
|
|
|
|
|
if world_size > 1: |
|
|
dist.barrier() |
|
|
|
|
|
if rank == 0: |
|
|
data_all = {} |
|
|
for i in range(world_size): |
|
|
data_all.update(load(tmpl.format(i))) |
|
|
|
|
|
meta = dataset.data |
|
|
if dataset_name == 'MMBench-Video' and getattr(dataset, 'pack', False): |
|
|
meta, vstats = dataset.load_pack_answers(data_all) |
|
|
print(f'Statitics of Pack Video Inference: {vstats}') |
|
|
else: |
|
|
for x in meta['index']: |
|
|
assert x in data_all |
|
|
meta['prediction'] = [str(data_all[x]) for x in meta['index']] |
|
|
if 'image' in meta: |
|
|
meta.pop('image') |
|
|
|
|
|
dump(meta, result_file) |
|
|
for i in range(world_size): |
|
|
os.remove(tmpl.format(i)) |
|
|
return model |
|
|
|