import torch import torch.distributed as dist from vlmeval.config import supported_VLM from vlmeval.utils import track_progress_rich from vlmeval.smp import * FAIL_MSG = 'Failed to obtain answer via API.' def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data', type=str, nargs='+', required=True) parser.add_argument('--model', type=str, nargs='+', required=True) parser.add_argument('--nproc', type=int, default=4, required=True) parser.add_argument('--verbose', action='store_true') args = parser.parse_args() return args # Only API model is accepted def infer_data_api(model, work_dir, model_name, dataset, samples_dict={}, api_nproc=4): rank, world_size = get_rank_and_world_size() assert rank == 0 and world_size == 1 dataset_name = dataset.dataset_name model = supported_VLM[model_name]() if isinstance(model, str) else model assert getattr(model, 'is_api', False) indices = list(samples_dict.keys()) structs = [dataset.build_prompt(samples_dict[idx], video_llm=getattr(model, 'VIDEO_LLM', False)) for idx in indices] packstr = 'pack' if getattr(dataset, 'pack', False) else 'nopack' if dataset.nframe > 0: out_file = f'{work_dir}/{model_name}_{dataset_name}_{dataset.nframe}frame_{packstr}_supp.pkl' else: out_file = f'{work_dir}/{model_name}_{dataset_name}_{dataset.fps}fps_{packstr}_supp.pkl' res = load(out_file) if osp.exists(out_file) else {} structs = [s for i, s in zip(indices, structs) if i not in res or res[i] == FAIL_MSG] indices = [i for i in indices if i not in res or res[i] == FAIL_MSG] gen_func = model.generate structs = [dict(message=struct, dataset=dataset_name) for struct in structs] if len(structs): track_progress_rich(gen_func, structs, nproc=api_nproc, chunksize=api_nproc, save=out_file, keys=indices) res = load(out_file) return res def infer_data(model, model_name, work_dir, dataset, out_file, verbose=False, api_nproc=4): res = load(out_file) if osp.exists(out_file) else {} rank, world_size = get_rank_and_world_size() dataset_name = dataset.dataset_name sample_indices = list(dataset.videos) if getattr(dataset, 'pack', False) else list(dataset.data['index']) samples = list(dataset.videos) if getattr(dataset, 'pack', False) else list(range(len(dataset.data))) sample_map = {i: s for i, s in zip(sample_indices, samples)} sample_indices_sub = sample_indices[rank::world_size] if np.all([idx in res for idx in sample_indices_sub]): return model sample_indices_subrem = [x for x in sample_indices_sub if x not in res] model = supported_VLM[model_name]() if isinstance(model, str) else model is_api = getattr(model, 'is_api', False) if is_api: assert world_size == 1 supp = infer_data_api( model=model, work_dir=work_dir, model_name=model_name, dataset=dataset, samples_dict={k: sample_map[k] for k in sample_indices_subrem}, api_nproc=api_nproc) for k in sample_indices_subrem: assert k in supp res.update(supp) dump(res, out_file) return model assert not getattr(dataset, 'pack', False), 'Current model not supported pack mode!' for i, idx in tqdm(enumerate(sample_indices_subrem)): if idx in res: continue if getattr(model, 'nframe', None) is not None and getattr(model, 'nframe', 0) > 0: if dataset.nframe > 0: if getattr(model, 'nframe', 0) != dataset.nframe: print(f'{model_name} is a video-llm model, nframe is set to {dataset.nframe}, not using default') setattr(model, 'nframe', dataset.nframe) elif getattr(model, 'fps', 0) == 0: raise ValueError(f'fps is not suitable for {model_name}') else: setattr(model, 'nframe', None) if getattr(model, 'fps', None) is not None and getattr(model, 'fps', 0) > 0: if dataset.fps > 0: if getattr(model, 'fps', 0) != dataset.fps: print(f'{model_name} is a video-llm model, fps is set to {dataset.fps}, not using default') setattr(model, 'fps', dataset.fps) elif getattr(model, 'nframe', 0) == 0: raise ValueError(f'nframe is not suitable for {model_name}') else: setattr(model, 'fps', None) if 'SUB_DATASET' in dataset.data.iloc[sample_map[idx]]: dataset_name = dataset.data.iloc[sample_map[idx]]['SUB_DATASET'] if hasattr(model, 'use_custom_prompt') and model.use_custom_prompt(dataset_name): if dataset.nframe == 0: raise ValueError(f'nframe must be set for custom prompt, fps is not suitable for {model_name}') struct = model.build_prompt( dataset.data.iloc[sample_map[idx]], dataset=dataset, video_llm=getattr(model, 'VIDEO_LLM', False) ) else: struct = dataset.build_prompt( sample_map[idx], video_llm=getattr(model, 'VIDEO_LLM', False) ) response = model.generate(message=struct, dataset=dataset_name) torch.cuda.empty_cache() if verbose: print(response, flush=True) res[idx] = response if (i + 1) % 20 == 0: dump(res, out_file) res = {k: res[k] for k in sample_indices_sub} dump(res, out_file) return model # A wrapper for infer_data, do the pre & post processing def infer_data_job_video( model, work_dir, model_name, dataset, result_file_name, verbose=False, api_nproc=4): dataset_name = dataset.dataset_name rank, world_size = get_rank_and_world_size() result_file = osp.join(work_dir, result_file_name) # Dump Predictions to Prev File if result file exists if osp.exists(result_file): return model tmpl = osp.join(work_dir, '{}' + f'{world_size}_{osp.splitext(result_file_name)[0]}.pkl') out_file = tmpl.format(rank) model = infer_data( model=model, model_name=model_name, work_dir=work_dir, dataset=dataset, out_file=out_file, verbose=verbose, api_nproc=api_nproc) if world_size > 1: dist.barrier() if rank == 0: data_all = {} for i in range(world_size): data_all.update(load(tmpl.format(i))) meta = dataset.data if dataset_name == 'MMBench-Video' and getattr(dataset, 'pack', False): meta, vstats = dataset.load_pack_answers(data_all) print(f'Statitics of Pack Video Inference: {vstats}') else: for x in meta['index']: assert x in data_all meta['prediction'] = [str(data_all[x]) for x in meta['index']] if 'image' in meta: meta.pop('image') dump(meta, result_file) for i in range(world_size): os.remove(tmpl.format(i)) return model