| import re | |
| import logging | |
| import torch | |
| from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration | |
| def create_message(sample): | |
| query = sample['query'] | |
| all_contents = [] | |
| matches = re.findall(r"<(image_\d+)>", query) | |
| split_text = re.split(r"<image_\d+>", query) | |
| images = [] | |
| for i, fragment in enumerate(split_text): | |
| if fragment.strip(): | |
| all_contents.extend([ | |
| {"type": "text", "text": fragment} | |
| ]) | |
| if i < len(matches): | |
| if sample[matches[i]]: | |
| all_contents.extend([ | |
| {"type": "image"} | |
| ]) | |
| images.append(sample[matches[i]]) | |
| else: | |
| logging.error( | |
| f"The image token {matches[i]} is in the query, but there is no corresponding image provided by the data") | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": all_contents | |
| } | |
| ] | |
| return messages, images | |
| class Llava_Model: | |
| def __init__( | |
| self, | |
| model_path, | |
| temperature=0, | |
| max_tokens=1024 | |
| ): | |
| self.temperature = temperature | |
| self.max_tokens = max_tokens | |
| self.model = LlavaOnevisionForConditionalGeneration.from_pretrained( | |
| model_path, | |
| torch_dtype=torch.float16, | |
| device_map="auto", | |
| use_flash_attention_2=True | |
| ) | |
| self.processor = AutoProcessor.from_pretrained(model_path) | |
| def get_response(self, sample): | |
| model = self.model | |
| processor = self.processor | |
| try: | |
| messages, images = create_message(sample) | |
| input_text = processor.apply_chat_template(messages, add_generation_prompt=True) | |
| inputs = processor( | |
| images=images, | |
| text=input_text, | |
| add_special_tokens=False, | |
| return_tensors="pt" | |
| ).to(model.device, torch.float16) | |
| output = model.generate(**inputs, do_sample=True, temperature=self.temperature, max_new_tokens=self.max_tokens) | |
| response = processor.decode(output[0], skip_special_tokens=True) | |
| assistant_index = response.find("assistant") | |
| if assistant_index != -1: | |
| final_answer = response[assistant_index + len("assistant"):].strip() | |
| else: | |
| final_answer = response.strip() | |
| return final_answer | |
| except Exception as e: | |
| print(e) | |
| return None |