import re import logging import torch from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration def create_message(sample): query = sample['query'] all_contents = [] matches = re.findall(r"<(image_\d+)>", query) split_text = re.split(r"", query) images = [] for i, fragment in enumerate(split_text): if fragment.strip(): all_contents.extend([ {"type": "text", "text": fragment} ]) if i < len(matches): if sample[matches[i]]: all_contents.extend([ {"type": "image"} ]) images.append(sample[matches[i]]) else: logging.error( f"The image token {matches[i]} is in the query, but there is no corresponding image provided by the data") messages = [ { "role": "user", "content": all_contents } ] return messages, images class Llava_Model: def __init__( self, model_path, temperature=0, max_tokens=1024 ): self.temperature = temperature self.max_tokens = max_tokens self.model = LlavaOnevisionForConditionalGeneration.from_pretrained( model_path, torch_dtype=torch.float16, device_map="auto", use_flash_attention_2=True ) self.processor = AutoProcessor.from_pretrained(model_path) def get_response(self, sample): model = self.model processor = self.processor try: messages, images = create_message(sample) input_text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor( images=images, text=input_text, add_special_tokens=False, return_tensors="pt" ).to(model.device, torch.float16) output = model.generate(**inputs, do_sample=True, temperature=self.temperature, max_new_tokens=self.max_tokens) response = processor.decode(output[0], skip_special_tokens=True) assistant_index = response.find("assistant") if assistant_index != -1: final_answer = response[assistant_index + len("assistant"):].strip() else: final_answer = response.strip() return final_answer except Exception as e: print(e) return None