File size: 10,678 Bytes
bfa5400
 
 
acd12b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
---

license: mit
---

<img src="https://github.com/pi3det/toolkit/blob/main/images/pi3det.gif" width="12.5%" 

align="left">

# Perspective-Invariant 3D Object Detection

<p align="center">
  <a href="https://alanliang.vercel.app/" target="_blank">Ao Liang</a><sup>*,1,2,3,4</sup>&nbsp;

  <a href="https://ldkong.com/" target="_blank">Lingdong Kong</a><sup>*,1</sup>&nbsp;
  <a href="https://dylanorange.github.io/" target="_blank">Dongyue Lu</a><sup>*,1</sup>&nbsp;

  <a href="" target="_blank">Youquan Liu</a><sup>5</sup>&nbsp;

  <a href="" target="_blank">Jian Fang</a><sup>4</sup>&nbsp;

  <a href="" target="_blank">Huaici Zhao</a><sup>4</sup>&nbsp;

  <a href="https://www.comp.nus.edu.sg/~ooiwt/" target="_blank">Wei Tsang Ooi</a><sup>1</sup>

  <br />

  <sup>1</sup>National University of Singapore&nbsp;&nbsp;&nbsp;

  <sup>2</sup>University of Chinese Academy of Sciences&nbsp;&nbsp;&nbsp;

  <br />

  <sup>3</sup>Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences&nbsp;&nbsp;&nbsp;

  <br />

  <sup>4</sup>Shenyang Institute of Automation, Chinese Academy of Sciences

  <sup>5</sup>Fudan University

  <br />

  <sup>*</sup>Equally contributed to this work&nbsp;&nbsp;&nbsp;
</p>

<p align="center">
  <a href="" target='_blank'>
    <img src="https://img.shields.io/badge/Paper-%F0%9F%93%96-darkred">

  </a>


  <a href="http://pi3det.github.io/" target='_blank'>
    <img src="https://img.shields.io/badge/Project-%F0%9F%94%97-orange">

  </a>


  <a href="" target='_blank'>
    <img src="https://visitor-badge.laobi.icu/badge?page_id=pi3det.Pi3EDT">

  </a>

</p>


<img src="https://robosense2025.github.io/images/track5/teaser.png" alt="Teaser" width="100%">


## Updates
- **[July 2025]**: Project page released.
- **[June 2025]**: **Pi3DET** has been extended to <strong>Track 5: Cross-Platform 3D Object Detection</strong> of the <a href="https://robosense2025.github.io/" target="_blank" rel="noopener noreferrer"><strong><u>RoboSense Challenge</u></strong></a> at <a href="https://www.iros25.org/" target="_blank" rel="noopener noreferrer"><strong><u>IROS 2025</u></strong></a>. See the <a href="https://robosense2025.github.io/track5" target="_blank" rel="noopener noreferrer"><strong><u>track homepage</u></strong></a>, <a href="https://github.com/robosense2025/track5" target="_blank" rel="noopener noreferrer"><strong><u>GitHub repo</u></strong></a> for more details.

## Todo
> Since the Pi3DET dataset is being used for **Track 5: Cross-Platform 3D Object Detection** of the [**_RoboSense Challenge_**](https://robosense2025.github.io/) at [**_IROS 2025_**](https://www.iros25.org/), in the interest of fairness we are temporarily not releasing all of the data and annotations. If you’re interested, we have open‑sourced a subset of the data and code—please refer to the track details for more information.

- [x] Release <strong>Phase 1</strong> dataset of the IROS Track, which is KITTI-like single-framee format.
- [ ] Release <strong>Phase 2</strong> dataset of the IROS Track, which is KITTI-like single-framee format.
- [ ] Release all data of Pi3DET, which has temporal information.

## Download
The Track 5 dataset follows the KITTI format. Each sample consists of:
- A front-view RGB image
- A LiDAR point cloud covering the camera’s field of view
- Calibration parameters
- 3D bounding-box annotations (for training)  
> Calibration and annotations are packaged together in `.pkl` files.

We use the **same training set** (vehicle platform) for both phases, but **different validation sets**. The full dataset is hosted on Hugging Face:

[robosense/track5-cross-platform-3d-object-detection](https://huggingface.co/datasets/robosense/datasets/tree/main/track5-cross-platform-3d-object-detection)

1. **Download the dataset**  
   ```bash

   python tools/load_dataset.py $USER_DEFINE_OUTPUT_PATH

2. **Link data into the project**  

   ```bash

    # Create target directory

    mkdir -p data/pi3det



    # Link the training split

    ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase12_vehicle_training/training \

        data/pi3det/training



    # Link the validation split for Phase 1 (Drone)

    ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase1_drone_validation/validation \

        data/pi3det/validation



    # Link the .pkl info files

    ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase12_vehicle_training/training/pi3det_infos_train.pkl \

        data/pi3det/pi3det_infos_train.pkl

    ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase1_drone_validation/validation/pi3det_infos_val.pkl \

        data/pi3det/pi3det_infos_val.pkl

3. **Verify your directory structure**  

After linking, your `data/` folder should look like this:

   ```bash

    data/

    └── pi3det/

        ├── training/

        │   ├── image/

        │   │   ├── 0000000.jpg

        │   │   └── 0000001.jpg

        │   └── point_cloud/

        │       ├── 0000000.bin

        │       └── 0000001.bin

        ├── validation/

        │   ├── image/

        │   │   ├── 0000000.jpg

        │   │   └── 0000001.jpg

        │   └── point_cloud/

        │       ├── 0000000.bin

        │       └── 0000001.bin

        ├── pi3det_infos_train.pkl

        └── pi3det_infos_val.pkl

    ```


## Pi3DET Dataset
### Detailed statistic information

| Platform                    | Condition      | Sequence               | # of Frames | # of Points (M) | # of Vehicles | # of Pedestrians |
|-----------------------------|----------------|------------------------|------------:|----------------:|--------------:|-----------------:|
| **Vehicle (8)**             | **Daytime (4)**| city_hall              |      2,982  |           26.61 |       19,489  |          12,199 |

|                             |                | penno_big_loop         |      3,151  |           33.29 |       17,240  |           1,886 |

|                             |                | rittenhouse            |      3,899  |           49.36 |       11,056  |          12,003 |

|                             |                | ucity_small_loop       |      6,746  |           67.49 |       34,049  |          34,346 |

|                             | **Nighttime (4)**| city_hall            |      2,856  |           26.16 |       12,655  |           5,492 |
|                             |                | penno_big_loop         |      3,291  |           38.04 |        8,068  |             106 |
|                             |                | rittenhouse            |      4,135  |           52.68 |       11,103  |          14,315 |
|                             |                | ucity_small_loop       |      5,133  |           53.32 |       18,251  |           8,639 |
|                             |                | **Summary (Vehicle)**  |     32,193  |          346.95 |      131,911  |          88,986 |
| **Drone (7)**               | **Daytime (4)**| penno_parking_1        |      1,125  |            8.69 |        6,075  |             115 |
|                             |                | penno_parking_2        |      1,086  |            8.55 |        5,896  |             340 |
|                             |                | penno_plaza            |        678  |            5.60 |          721  |              65 |

|                             |                | penno_trees            |      1,319  |           11.58 |          657  |             160 |
|                             | **Nighttime (3)**| high_beams           |        674  |            5.51 |          578  |             211 |

|                             |                | penno_parking_1        |      1,030  |            9.42 |          524  |             151 |

|                             |                | penno_parking_2        |      1,140  |           10.12 |           83   |             230 |

|                             |                | **Summary (Drone)**    |      7,052  |           59.47 |       14,534  |           1,272 |

| **Quadruped (10)**          | **Daytime (8)**| art_plaza_loop         |      1,446  |           14.90 |            0   |           3,579 |

|                             |                | penno_short_loop       |      1,176  |           14.68 |        3,532  |              89 |

|                             |                | rocky_steps            |      1,535  |           14.42 |            0   |           5,739 |
|                             |                | skatepark_1            |        661  |           12.21 |            0   |             893 |

|                             |                | skatepark_2            |        921  |            8.47 |            0   |             916 |
|                             |                | srt_green_loop         |        639  |            9.23 |        1,349  |             285 |
|                             |                | srt_under_bridge_1     |      2,033  |           28.95 |            0   |           1,432 |

|                             |                | srt_under_bridge_2     |      1,813  |           25.85 |            0   |           1,463 |
|                             | **Nighttime (2)**| penno_plaza_lights   |        755  |           11.25 |          197  |              52 |
|                             |                | penno_short_loop       |      1,321  |           16.79 |          904  |             103 |
|                             |                | **Summary (Quadruped)**|     12,300  |          156.75 |        5,982  |          14,551 |
| **All Three Platforms (25)**|                | **Summary (All)**      |     51,545  |          563.17 |      152,427  |         104,809 |

### Examples
<img src="https://robosense2025.github.io/images/track5/data_example1.png" alt="Teaser" width="100%">
<img src="https://robosense2025.github.io/images/track5/data_example2.png" alt="Teaser" width="100%">
<img src="https://robosense2025.github.io/images/track5/data_example3.png" alt="Teaser" width="100%">

### Examples
<img src="https://robosense2025.github.io/images/track5/data_example1.png" alt="Teaser" width="100%">
<img src="https://robosense2025.github.io/images/track5/data_example2.png" alt="Teaser" width="100%">
<img src="https://robosense2025.github.io/images/track5/data_example3.png" alt="Teaser" width="100%">