AlanLiangC commited on
Commit
acd12b3
·
1 Parent(s): bfa5400

Update README

Browse files
Files changed (1) hide show
  1. README.md +154 -0
README.md CHANGED
@@ -1,3 +1,157 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ <img src="https://github.com/pi3det/toolkit/blob/main/images/pi3det.gif" width="12.5%"
5
+ align="left">
6
+
7
+ # Perspective-Invariant 3D Object Detection
8
+
9
+ <p align="center">
10
+ <a href="https://alanliang.vercel.app/" target="_blank">Ao Liang</a><sup>*,1,2,3,4</sup>&nbsp;
11
+ <a href="https://ldkong.com/" target="_blank">Lingdong Kong</a><sup>*,1</sup>&nbsp;
12
+ <a href="https://dylanorange.github.io/" target="_blank">Dongyue Lu</a><sup>*,1</sup>&nbsp;
13
+ <a href="" target="_blank">Youquan Liu</a><sup>5</sup>&nbsp;
14
+ <a href="" target="_blank">Jian Fang</a><sup>4</sup>&nbsp;
15
+ <a href="" target="_blank">Huaici Zhao</a><sup>4</sup>&nbsp;
16
+ <a href="https://www.comp.nus.edu.sg/~ooiwt/" target="_blank">Wei Tsang Ooi</a><sup>1</sup>
17
+ <br />
18
+ <sup>1</sup>National University of Singapore&nbsp;&nbsp;&nbsp;
19
+ <sup>2</sup>University of Chinese Academy of Sciences&nbsp;&nbsp;&nbsp;
20
+ <br />
21
+ <sup>3</sup>Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences&nbsp;&nbsp;&nbsp;
22
+ <br />
23
+ <sup>4</sup>Shenyang Institute of Automation, Chinese Academy of Sciences
24
+ <sup>5</sup>Fudan University
25
+ <br />
26
+ <sup>*</sup>Equally contributed to this work&nbsp;&nbsp;&nbsp;
27
+ </p>
28
+
29
+ <p align="center">
30
+ <a href="" target='_blank'>
31
+ <img src="https://img.shields.io/badge/Paper-%F0%9F%93%96-darkred">
32
+ </a>
33
+
34
+ <a href="http://pi3det.github.io/" target='_blank'>
35
+ <img src="https://img.shields.io/badge/Project-%F0%9F%94%97-orange">
36
+ </a>
37
+
38
+ <a href="" target='_blank'>
39
+ <img src="https://visitor-badge.laobi.icu/badge?page_id=pi3det.Pi3EDT">
40
+ </a>
41
+ </p>
42
+
43
+ <img src="https://robosense2025.github.io/images/track5/teaser.png" alt="Teaser" width="100%">
44
+
45
+
46
+ ## Updates
47
+ - **[July 2025]**: Project page released.
48
+ - **[June 2025]**: **Pi3DET** has been extended to <strong>Track 5: Cross-Platform 3D Object Detection</strong> of the <a href="https://robosense2025.github.io/" target="_blank" rel="noopener noreferrer"><strong><u>RoboSense Challenge</u></strong></a> at <a href="https://www.iros25.org/" target="_blank" rel="noopener noreferrer"><strong><u>IROS 2025</u></strong></a>. See the <a href="https://robosense2025.github.io/track5" target="_blank" rel="noopener noreferrer"><strong><u>track homepage</u></strong></a>, <a href="https://github.com/robosense2025/track5" target="_blank" rel="noopener noreferrer"><strong><u>GitHub repo</u></strong></a> for more details.
49
+
50
+ ## Todo
51
+ > Since the Pi3DET dataset is being used for **Track 5: Cross-Platform 3D Object Detection** of the [**_RoboSense Challenge_**](https://robosense2025.github.io/) at [**_IROS 2025_**](https://www.iros25.org/), in the interest of fairness we are temporarily not releasing all of the data and annotations. If you’re interested, we have open‑sourced a subset of the data and code—please refer to the track details for more information.
52
+
53
+ - [x] Release <strong>Phase 1</strong> dataset of the IROS Track, which is KITTI-like single-framee format.
54
+ - [ ] Release <strong>Phase 2</strong> dataset of the IROS Track, which is KITTI-like single-framee format.
55
+ - [ ] Release all data of Pi3DET, which has temporal information.
56
+
57
+ ## Download
58
+ The Track 5 dataset follows the KITTI format. Each sample consists of:
59
+ - A front-view RGB image
60
+ - A LiDAR point cloud covering the camera’s field of view
61
+ - Calibration parameters
62
+ - 3D bounding-box annotations (for training)
63
+ > Calibration and annotations are packaged together in `.pkl` files.
64
+
65
+ We use the **same training set** (vehicle platform) for both phases, but **different validation sets**. The full dataset is hosted on Hugging Face:
66
+
67
+ [robosense/track5-cross-platform-3d-object-detection](https://huggingface.co/datasets/robosense/datasets/tree/main/track5-cross-platform-3d-object-detection)
68
+
69
+ 1. **Download the dataset**
70
+ ```bash
71
+ python tools/load_dataset.py $USER_DEFINE_OUTPUT_PATH
72
+ 2. **Link data into the project**
73
+ ```bash
74
+ # Create target directory
75
+ mkdir -p data/pi3det
76
+
77
+ # Link the training split
78
+ ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase12_vehicle_training/training \
79
+ data/pi3det/training
80
+
81
+ # Link the validation split for Phase 1 (Drone)
82
+ ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase1_drone_validation/validation \
83
+ data/pi3det/validation
84
+
85
+ # Link the .pkl info files
86
+ ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase12_vehicle_training/training/pi3det_infos_train.pkl \
87
+ data/pi3det/pi3det_infos_train.pkl
88
+ ln -s $USER_DEFINE_OUTPUT_PATH/track5-cross-platform-3d-object-detection/phase1_drone_validation/validation/pi3det_infos_val.pkl \
89
+ data/pi3det/pi3det_infos_val.pkl
90
+ 3. **Verify your directory structure**
91
+ After linking, your `data/` folder should look like this:
92
+ ```bash
93
+ data/
94
+ └── pi3det/
95
+ ├── training/
96
+ │ ���── image/
97
+ │ │ ├── 0000000.jpg
98
+ │ │ └── 0000001.jpg
99
+ │ └── point_cloud/
100
+ │ ├── 0000000.bin
101
+ │ └── 0000001.bin
102
+ ├── validation/
103
+ │ ├── image/
104
+ │ │ ├── 0000000.jpg
105
+ │ │ └── 0000001.jpg
106
+ │ └── point_cloud/
107
+ │ ├── 0000000.bin
108
+ │ └── 0000001.bin
109
+ ├── pi3det_infos_train.pkl
110
+ └── pi3det_infos_val.pkl
111
+ ```
112
+
113
+
114
+ ## Pi3DET Dataset
115
+ ### Detailed statistic information
116
+
117
+ | Platform | Condition | Sequence | # of Frames | # of Points (M) | # of Vehicles | # of Pedestrians |
118
+ |-----------------------------|----------------|------------------------|------------:|----------------:|--------------:|-----------------:|
119
+ | **Vehicle (8)** | **Daytime (4)**| city_hall | 2,982 | 26.61 | 19,489 | 12,199 |
120
+ | | | penno_big_loop | 3,151 | 33.29 | 17,240 | 1,886 |
121
+ | | | rittenhouse | 3,899 | 49.36 | 11,056 | 12,003 |
122
+ | | | ucity_small_loop | 6,746 | 67.49 | 34,049 | 34,346 |
123
+ | | **Nighttime (4)**| city_hall | 2,856 | 26.16 | 12,655 | 5,492 |
124
+ | | | penno_big_loop | 3,291 | 38.04 | 8,068 | 106 |
125
+ | | | rittenhouse | 4,135 | 52.68 | 11,103 | 14,315 |
126
+ | | | ucity_small_loop | 5,133 | 53.32 | 18,251 | 8,639 |
127
+ | | | **Summary (Vehicle)** | 32,193 | 346.95 | 131,911 | 88,986 |
128
+ | **Drone (7)** | **Daytime (4)**| penno_parking_1 | 1,125 | 8.69 | 6,075 | 115 |
129
+ | | | penno_parking_2 | 1,086 | 8.55 | 5,896 | 340 |
130
+ | | | penno_plaza | 678 | 5.60 | 721 | 65 |
131
+ | | | penno_trees | 1,319 | 11.58 | 657 | 160 |
132
+ | | **Nighttime (3)**| high_beams | 674 | 5.51 | 578 | 211 |
133
+ | | | penno_parking_1 | 1,030 | 9.42 | 524 | 151 |
134
+ | | | penno_parking_2 | 1,140 | 10.12 | 83 | 230 |
135
+ | | | **Summary (Drone)** | 7,052 | 59.47 | 14,534 | 1,272 |
136
+ | **Quadruped (10)** | **Daytime (8)**| art_plaza_loop | 1,446 | 14.90 | 0 | 3,579 |
137
+ | | | penno_short_loop | 1,176 | 14.68 | 3,532 | 89 |
138
+ | | | rocky_steps | 1,535 | 14.42 | 0 | 5,739 |
139
+ | | | skatepark_1 | 661 | 12.21 | 0 | 893 |
140
+ | | | skatepark_2 | 921 | 8.47 | 0 | 916 |
141
+ | | | srt_green_loop | 639 | 9.23 | 1,349 | 285 |
142
+ | | | srt_under_bridge_1 | 2,033 | 28.95 | 0 | 1,432 |
143
+ | | | srt_under_bridge_2 | 1,813 | 25.85 | 0 | 1,463 |
144
+ | | **Nighttime (2)**| penno_plaza_lights | 755 | 11.25 | 197 | 52 |
145
+ | | | penno_short_loop | 1,321 | 16.79 | 904 | 103 |
146
+ | | | **Summary (Quadruped)**| 12,300 | 156.75 | 5,982 | 14,551 |
147
+ | **All Three Platforms (25)**| | **Summary (All)** | 51,545 | 563.17 | 152,427 | 104,809 |
148
+
149
+ ### Examples
150
+ <img src="https://robosense2025.github.io/images/track5/data_example1.png" alt="Teaser" width="100%">
151
+ <img src="https://robosense2025.github.io/images/track5/data_example2.png" alt="Teaser" width="100%">
152
+ <img src="https://robosense2025.github.io/images/track5/data_example3.png" alt="Teaser" width="100%">
153
+
154
+ ### Examples
155
+ <img src="https://robosense2025.github.io/images/track5/data_example1.png" alt="Teaser" width="100%">
156
+ <img src="https://robosense2025.github.io/images/track5/data_example2.png" alt="Teaser" width="100%">
157
+ <img src="https://robosense2025.github.io/images/track5/data_example3.png" alt="Teaser" width="100%">