|
|
--- |
|
|
license: cc-by-nc-4.0 |
|
|
task_categories: |
|
|
- text-to-speech |
|
|
- automatic-speech-recognition |
|
|
language: |
|
|
- ru |
|
|
pretty_name: OpenSTT annotate by Balalaika |
|
|
--- |
|
|
|
|
|
# OpenSTT Annotated by Balalaika |
|
|
|
|
|
**A curated Russian speech dataset for advanced speech generative tasks.** |
|
|
|
|
|
## Overview |
|
|
|
|
|
**OpenSTT Annotated by Balalaika** is a high-quality Russian speech corpus, meticulously filtered and annotated by the **lab260 team at MTUCI** with the latest version of our pipeline, **BALALAIKA**. |
|
|
|
|
|
- **Language:** Russian only |
|
|
- **Genres:** Podcasts, public speech, YouTube, audiobooks, phone calls, TTS, and more |
|
|
- **Source:** OpenSTT ([GitHub link](https://github.com/snakers4/open_stt?tab=readme-ov-file)) |
|
|
- **License:** CC BY-NC 4.0 (same as original OpenSTT) |
|
|
- **Total Duration After Filtering:** 431.43 hours (from over 20,108 hours raw) |
|
|
- **Format:** Parquet files with split-wise annotation |
|
|
|
|
|
*** |
|
|
|
|
|
## Usage |
|
|
|
|
|
**Primary Use Cases:** |
|
|
- Text-to-Speech (TTS) generation |
|
|
- Automatic Speech Recognition (ASR) |
|
|
- Analysis of accent, stress, and prosody |
|
|
- Russian speech technology research |
|
|
|
|
|
### 1. Download the dataset |
|
|
|
|
|
### 2. Extract the files |
|
|
|
|
|
```basg |
|
|
for archive in *.tar.gz; do |
|
|
dir="${archive%.tar.gz}" |
|
|
mkdir -p "$dir" |
|
|
tar -xzvf "$archive" -C "$dir" |
|
|
rm "$archive" |
|
|
done |
|
|
``` |
|
|
|
|
|
### 3. Load data in PyTorch |
|
|
|
|
|
```python |
|
|
from pathlib import Path |
|
|
import pandas as pd |
|
|
from torch.utils.data import Dataset |
|
|
import torchaudio |
|
|
|
|
|
class ParquetConcatDataset(Dataset): |
|
|
def __init__(self, parquet_dir, audio_root, parse_fn=None): |
|
|
self.parquet_dir = Path(parquet_dir) |
|
|
self.audio_root = Path(audio_root) |
|
|
|
|
|
parquet_files = list(self.parquet_dir.glob("*.parquet")) |
|
|
dfs = [pd.read_parquet(f) for f in parquet_files] |
|
|
self.df = pd.concat(dfs, ignore_index=True) |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.df) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
row = self.df.iloc[idx] |
|
|
audio_path = self.audio_root / row["filepath"] |
|
|
waveform, sample_rate = torchaudio.load(audio_path) |
|
|
return { |
|
|
"audio_path": str(audio_path), |
|
|
"waveform": waveform, |
|
|
"sample_rate": sample_rate, |
|
|
"nisqa_mos": row["mos_pred"], |
|
|
"nisqa_noi": row["noi_pred"], |
|
|
"nisqa_dis": row["dis_pred"], |
|
|
"nisqa_col": row["col_pred"], |
|
|
"nisqa_loud": row["loud_pred"], |
|
|
"nisqa_model": row["model"], |
|
|
"is_single_speaker": bool(row["is_single_speaker"]), |
|
|
"accented_text": row["accent"], |
|
|
"asr_text": row["rover"], |
|
|
"punctuated_text": row["punct"], |
|
|
"phonemes": row["phonemes"] |
|
|
} |
|
|
|
|
|
# Example usage |
|
|
ds = ParquetConcatDataset( |
|
|
PATH_TO_PARQUETS_DIR, |
|
|
PATH_TO_AUDIO_ROOT |
|
|
) |
|
|
``` |
|
|
|
|
|
`PATH_TO_PARQUETS_DIR`: Path to the folder containing all .parquet files with metadata and annotations for the dataset. |
|
|
|
|
|
`PATH_TO_AUDIO_ROOT`: Path to the root directory containing all audio subfolders and files referenced by filepath columns in the metadata. |
|
|
*** |
|
|
|
|
|
## Data Processing & Annotation |
|
|
|
|
|
Our pipeline applies **rigorous filtering and enrichment** steps: |
|
|
|
|
|
1. **Removed speech segments** shorter than 3 seconds |
|
|
2. **Filtered segments** with [NISQA](https://github.com/gabrielmittag/NISQA/tree/master/nisqa) MOS < 4.0 for quality assurance |
|
|
3. **Excluded segments with multiple speakers** (via [pyannotate diarization](https://huggingface.co/pyannote/speaker-diarization-community-1)) |
|
|
4. **Filtered out speech with music background** (custom music detector) |
|
|
5. **Revised transcriptions:** Crowd-sourced with multiple ASRs, fused via ROVER ([T-one](https://github.com/voicekit-team/T-one/tree/main), [GigaAMv2-rnnt, GigaAMv2-ctc, GigaAMv2-ctc-lm](https://github.com/salute-developers/GigaAM), [vosk](https://huggingface.co/alphacep/vosk-model-ru)) |
|
|
6. **Punctuation added** using [RuPunct](https://huggingface.co/RUPunct/RUPunct_big) |
|
|
7. **Stress marks added** via [RuAccent](https://github.com/Den4ikAI/ruaccent) |
|
|
8. **IPA phonemization** performed with our own neural model |
|
|
|
|
|
All **annotation fields** are handled and provided separately for transparency and flexibility. |
|
|
|
|
|
*** |
|
|
|
|
|
## Data Structure |
|
|
|
|
|
- **Annotation storage:** Parquet files |
|
|
- **Speech storage:** .tar.gz files with speech segments in .opus |
|
|
- **Splitting:** Follows OpenSTT splits |
|
|
- **Annotations:** Each sample includes separate fields for: |
|
|
- **Filepath** |
|
|
- **Quality metrics: MOS, NOI, DIS, COL, LOUD** |
|
|
- **Model for quality assesment** |
|
|
- **Transcript with stresses and pucntuation** |
|
|
- **Transcript after ROVER** |
|
|
- **Transcript with punctuation** |
|
|
- **IPA transcription** |
|
|
- **Speaker diarization flag** |
|
|
|
|
|
|
|
|
|
|
|
*** |
|
|
|
|
|
## How to Cite |
|
|
|
|
|
Please cite the following paper if you use this dataset in research: |
|
|
``` |
|
|
@misc{borodin2025datacentricframeworkaddressingphonetic, |
|
|
title={A Data-Centric Framework for Addressing Phonetic and Prosodic Challenges in Russian Speech Generative Models}, |
|
|
author={Kirill Borodin and Nikita Vasiliev and Vasiliy Kudryavtsev and Maxim Maslov and Mikhail Gorodnichev and Oleg Rogov and Grach Mkrtchian}, |
|
|
year={2025}, |
|
|
eprint={2507.13563}, |
|
|
archivePrefix={arXiv}, |
|
|
primaryClass={cs.CL}, |
|
|
url={https://arxiv.org/abs/2507.13563}, |
|
|
} |
|
|
``` |
|
|
|
|
|
*** |
|
|
|
|
|
## Contact |
|
|
|
|
|
- Telegram: [@korallll_ai](https://t.me/korallll_ai) |
|
|
- Email: [k.n.borodin@mtuci.ru](mailto:k.n.borodin@mtuci.ru) |
|
|
|
|
|
*** |
|
|
|
|
|
## Links |
|
|
|
|
|
- [Balalaka annotation pipeline](https://github.com/mtuciru/balalaika/tree/main/src) |
|
|
- [Other datasets annotated by BALALAIKA](https://huggingface.co/collections/MTUCI/balalaika-dataset) |
|
|
- [Custom models' inference implementaton](https://huggingface.co/collections/MTUCI/balalaika-models) |
|
|
- [Paper (arXiv)](https://arxiv.org/pdf/2507.13563) |
|
|
- [OpenSTT repository](https://github.com/snakers4/open_stt?tab=readme-ov-file) |
|
|
- [NISQA](https://github.com/gabrielmittag/NISQA/tree/master/nisqa) |
|
|
- [pyannotate diarization](https://huggingface.co/pyannote/speaker-diarization-community-1) |
|
|
- [T-one](https://github.com/voicekit-team/T-one/tree/main) |
|
|
- [GigaAMv2-rnnt, GigaAMv2-ctc, GigaAMv2-ctc-lm](https://github.com/salute-developers/GigaAM) |
|
|
- [vosk](https://huggingface.co/alphacep/vosk-model-ru) |
|
|
- [RuPunct](https://huggingface.co/RUPunct/RUPunct_big) |
|
|
- [RuAccent](https://github.com/Den4ikAI/ruaccent) |
|
|
|
|
|
*** |
|
|
|
|
|
## License |
|
|
|
|
|
Distributed under **CC BY-NC 4.0**, matching original OpenSTT terms. |
|
|
|
|
|
*** |