Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -1,32 +1,131 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
dtype: string
|
| 16 |
-
splits:
|
| 17 |
-
- name: train
|
| 18 |
-
num_bytes: 35289
|
| 19 |
-
num_examples: 615
|
| 20 |
-
- name: test
|
| 21 |
-
num_bytes: 7689
|
| 22 |
-
num_examples: 134
|
| 23 |
-
download_size: 15661
|
| 24 |
-
dataset_size: 42978
|
| 25 |
-
configs:
|
| 26 |
-
- config_name: default
|
| 27 |
-
data_files:
|
| 28 |
-
- split: train
|
| 29 |
-
path: data/train-*
|
| 30 |
-
- split: test
|
| 31 |
-
path: data/test-*
|
| 32 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
license: mit
|
| 3 |
+
task_categories:
|
| 4 |
+
- tabular-classification
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
tags:
|
| 8 |
+
- education
|
| 9 |
+
- data-centric-ai
|
| 10 |
+
- label-noise
|
| 11 |
+
- cleanlab
|
| 12 |
+
pretty_name: Student Grades Dataset
|
| 13 |
+
size_categories:
|
| 14 |
+
- n<1K
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
---
|
| 16 |
+
|
| 17 |
+
# Student Grades Dataset
|
| 18 |
+
|
| 19 |
+
## Dataset Description
|
| 20 |
+
|
| 21 |
+
This dataset contains student grade data used in the cleanlab tutorial: [Improving ML Performance via Data Curation with Train vs Test Splits](https://docs.cleanlab.ai/stable/tutorials/improving_ml_performance.html).
|
| 22 |
+
|
| 23 |
+
The task is to predict each student's final letter grade (A, B, C, D, F) based on their exam scores and notes.
|
| 24 |
+
|
| 25 |
+
### Dataset Summary
|
| 26 |
+
|
| 27 |
+
- **Total Examples**: ~750 (train + test)
|
| 28 |
+
- **Task**: Multi-class classification
|
| 29 |
+
- **Features**:
|
| 30 |
+
- `exam_1`: Score on first exam (0-100)
|
| 31 |
+
- `exam_2`: Score on second exam (0-100)
|
| 32 |
+
- `exam_3`: Score on third exam (0-100)
|
| 33 |
+
- `notes`: Categorical notes about student (e.g., "great participation +10", "cheated on exam, gets 0pts")
|
| 34 |
+
- `stud_ID`: Unique student identifier
|
| 35 |
+
- **Label**: `noisy_letter_grade` - Letter grade (A, B, C, D, F)
|
| 36 |
+
|
| 37 |
+
### Dataset Structure
|
| 38 |
+
|
| 39 |
+
```python
|
| 40 |
+
from datasets import load_dataset
|
| 41 |
+
|
| 42 |
+
dataset = load_dataset("cleanlab/student-grades")
|
| 43 |
+
|
| 44 |
+
# Access splits
|
| 45 |
+
train_data = dataset["train"]
|
| 46 |
+
test_data = dataset["test"]
|
| 47 |
+
|
| 48 |
+
# Convert to pandas
|
| 49 |
+
import pandas as pd
|
| 50 |
+
df_train = train_data.to_pandas()
|
| 51 |
+
df_test = test_data.to_pandas()
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
### Data Splits
|
| 55 |
+
|
| 56 |
+
| Split | Examples |
|
| 57 |
+
|-------|----------|
|
| 58 |
+
| train | ~600 |
|
| 59 |
+
| test | ~130 |
|
| 60 |
+
|
| 61 |
+
### Dataset Fields
|
| 62 |
+
|
| 63 |
+
- **stud_ID** (string): Unique student identifier
|
| 64 |
+
- **exam_1** (float): First exam score (0-100)
|
| 65 |
+
- **exam_2** (float): Second exam score (0-100)
|
| 66 |
+
- **exam_3** (float): Third exam score (0-100)
|
| 67 |
+
- **notes** (string): Categorical notes about the student
|
| 68 |
+
- **noisy_letter_grade** (string): Final letter grade (A, B, C, D, F) - may contain label errors
|
| 69 |
+
|
| 70 |
+
## Dataset Creation
|
| 71 |
+
|
| 72 |
+
This dataset was created for educational purposes to demonstrate data-centric AI techniques using cleanlab. The data intentionally contains:
|
| 73 |
+
- **Label noise**: Some grades may be incorrectly labeled
|
| 74 |
+
- **Near duplicates**: Some examples are very similar or exact duplicates
|
| 75 |
+
- **Outliers**: Unusual data points that don't fit the distribution
|
| 76 |
+
|
| 77 |
+
These issues are introduced to help users learn how to detect and handle common data quality problems using cleanlab.
|
| 78 |
+
|
| 79 |
+
## Uses
|
| 80 |
+
|
| 81 |
+
### Primary Use Case
|
| 82 |
+
|
| 83 |
+
This dataset is designed for:
|
| 84 |
+
1. Learning data-centric AI techniques
|
| 85 |
+
2. Demonstrating cleanlab's capabilities for detecting label errors, outliers, and near duplicates
|
| 86 |
+
3. Teaching proper train/test data curation workflows
|
| 87 |
+
|
| 88 |
+
### Example Usage
|
| 89 |
+
|
| 90 |
+
```python
|
| 91 |
+
from datasets import load_dataset
|
| 92 |
+
from cleanlab import Datalab
|
| 93 |
+
|
| 94 |
+
# Load dataset
|
| 95 |
+
dataset = load_dataset("cleanlab/student-grades")
|
| 96 |
+
df_train = dataset["train"].to_pandas()
|
| 97 |
+
|
| 98 |
+
# Use cleanlab to detect issues
|
| 99 |
+
lab = Datalab(data=df_train, label_name="noisy_letter_grade", task="classification")
|
| 100 |
+
lab.find_issues()
|
| 101 |
+
lab.report()
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
## Tutorial
|
| 105 |
+
|
| 106 |
+
For a complete tutorial using this dataset, see:
|
| 107 |
+
[Improving ML Performance via Data Curation with Train vs Test Splits](https://docs.cleanlab.ai/stable/tutorials/improving_ml_performance.html)
|
| 108 |
+
|
| 109 |
+
## Licensing Information
|
| 110 |
+
|
| 111 |
+
MIT License
|
| 112 |
+
|
| 113 |
+
## Citation
|
| 114 |
+
|
| 115 |
+
If you use this dataset in your research, please cite the cleanlab library:
|
| 116 |
+
|
| 117 |
+
```bibtex
|
| 118 |
+
@software{cleanlab,
|
| 119 |
+
author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas},
|
| 120 |
+
title = {cleanlab},
|
| 121 |
+
year = {2021},
|
| 122 |
+
url = {https://github.com/cleanlab/cleanlab},
|
| 123 |
+
}
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
## Contact
|
| 127 |
+
|
| 128 |
+
- **Maintainers**: Cleanlab Team
|
| 129 |
+
- **Repository**: https://github.com/cleanlab/cleanlab
|
| 130 |
+
- **Documentation**: https://docs.cleanlab.ai
|
| 131 |
+
- **Issues**: https://github.com/cleanlab/cleanlab/issues
|