mturk24 commited on
Commit
f88f776
·
verified ·
1 Parent(s): e190679

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +129 -30
README.md CHANGED
@@ -1,32 +1,131 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: stud_ID
5
- dtype: string
6
- - name: exam_1
7
- dtype: float64
8
- - name: exam_2
9
- dtype: float64
10
- - name: exam_3
11
- dtype: float64
12
- - name: notes
13
- dtype: string
14
- - name: noisy_letter_grade
15
- dtype: string
16
- splits:
17
- - name: train
18
- num_bytes: 35289
19
- num_examples: 615
20
- - name: test
21
- num_bytes: 7689
22
- num_examples: 134
23
- download_size: 15661
24
- dataset_size: 42978
25
- configs:
26
- - config_name: default
27
- data_files:
28
- - split: train
29
- path: data/train-*
30
- - split: test
31
- path: data/test-*
32
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ task_categories:
4
+ - tabular-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - education
9
+ - data-centric-ai
10
+ - label-noise
11
+ - cleanlab
12
+ pretty_name: Student Grades Dataset
13
+ size_categories:
14
+ - n<1K
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
  ---
16
+
17
+ # Student Grades Dataset
18
+
19
+ ## Dataset Description
20
+
21
+ This dataset contains student grade data used in the cleanlab tutorial: [Improving ML Performance via Data Curation with Train vs Test Splits](https://docs.cleanlab.ai/stable/tutorials/improving_ml_performance.html).
22
+
23
+ The task is to predict each student's final letter grade (A, B, C, D, F) based on their exam scores and notes.
24
+
25
+ ### Dataset Summary
26
+
27
+ - **Total Examples**: ~750 (train + test)
28
+ - **Task**: Multi-class classification
29
+ - **Features**:
30
+ - `exam_1`: Score on first exam (0-100)
31
+ - `exam_2`: Score on second exam (0-100)
32
+ - `exam_3`: Score on third exam (0-100)
33
+ - `notes`: Categorical notes about student (e.g., "great participation +10", "cheated on exam, gets 0pts")
34
+ - `stud_ID`: Unique student identifier
35
+ - **Label**: `noisy_letter_grade` - Letter grade (A, B, C, D, F)
36
+
37
+ ### Dataset Structure
38
+
39
+ ```python
40
+ from datasets import load_dataset
41
+
42
+ dataset = load_dataset("cleanlab/student-grades")
43
+
44
+ # Access splits
45
+ train_data = dataset["train"]
46
+ test_data = dataset["test"]
47
+
48
+ # Convert to pandas
49
+ import pandas as pd
50
+ df_train = train_data.to_pandas()
51
+ df_test = test_data.to_pandas()
52
+ ```
53
+
54
+ ### Data Splits
55
+
56
+ | Split | Examples |
57
+ |-------|----------|
58
+ | train | ~600 |
59
+ | test | ~130 |
60
+
61
+ ### Dataset Fields
62
+
63
+ - **stud_ID** (string): Unique student identifier
64
+ - **exam_1** (float): First exam score (0-100)
65
+ - **exam_2** (float): Second exam score (0-100)
66
+ - **exam_3** (float): Third exam score (0-100)
67
+ - **notes** (string): Categorical notes about the student
68
+ - **noisy_letter_grade** (string): Final letter grade (A, B, C, D, F) - may contain label errors
69
+
70
+ ## Dataset Creation
71
+
72
+ This dataset was created for educational purposes to demonstrate data-centric AI techniques using cleanlab. The data intentionally contains:
73
+ - **Label noise**: Some grades may be incorrectly labeled
74
+ - **Near duplicates**: Some examples are very similar or exact duplicates
75
+ - **Outliers**: Unusual data points that don't fit the distribution
76
+
77
+ These issues are introduced to help users learn how to detect and handle common data quality problems using cleanlab.
78
+
79
+ ## Uses
80
+
81
+ ### Primary Use Case
82
+
83
+ This dataset is designed for:
84
+ 1. Learning data-centric AI techniques
85
+ 2. Demonstrating cleanlab's capabilities for detecting label errors, outliers, and near duplicates
86
+ 3. Teaching proper train/test data curation workflows
87
+
88
+ ### Example Usage
89
+
90
+ ```python
91
+ from datasets import load_dataset
92
+ from cleanlab import Datalab
93
+
94
+ # Load dataset
95
+ dataset = load_dataset("cleanlab/student-grades")
96
+ df_train = dataset["train"].to_pandas()
97
+
98
+ # Use cleanlab to detect issues
99
+ lab = Datalab(data=df_train, label_name="noisy_letter_grade", task="classification")
100
+ lab.find_issues()
101
+ lab.report()
102
+ ```
103
+
104
+ ## Tutorial
105
+
106
+ For a complete tutorial using this dataset, see:
107
+ [Improving ML Performance via Data Curation with Train vs Test Splits](https://docs.cleanlab.ai/stable/tutorials/improving_ml_performance.html)
108
+
109
+ ## Licensing Information
110
+
111
+ MIT License
112
+
113
+ ## Citation
114
+
115
+ If you use this dataset in your research, please cite the cleanlab library:
116
+
117
+ ```bibtex
118
+ @software{cleanlab,
119
+ author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas},
120
+ title = {cleanlab},
121
+ year = {2021},
122
+ url = {https://github.com/cleanlab/cleanlab},
123
+ }
124
+ ```
125
+
126
+ ## Contact
127
+
128
+ - **Maintainers**: Cleanlab Team
129
+ - **Repository**: https://github.com/cleanlab/cleanlab
130
+ - **Documentation**: https://docs.cleanlab.ai
131
+ - **Issues**: https://github.com/cleanlab/cleanlab/issues