Dataset Viewer
Auto-converted to Parquet Duplicate
stud_ID
stringlengths
6
6
exam_1
float64
0
100
exam_2
float64
0
100
exam_3
float64
32
100
notes
stringclasses
5 values
noisy_letter_grade
stringclasses
5 values
018bff
94
41
91
great participation +10
B
076d92
0
79
65
cheated on exam, gets 0pts
F
c80059
86
89
85
great final presentation +10
F
e38f8a
50
67
94
great final presentation +10
B
d57e1a
92
79
98
great final presentation +10
A
d88e3d
98
73
86
great final presentation +10
A
cbd44f
96
62
92
great participation +10
A
5a53c9
46
84
89
missed homework frequently -10
B
dc4e28
93
70
97
null
B
412771
72
0
86
cheated on exam, gets 0pts
F
dda6c7
83
85
90
great participation +10
A
63be9d
94
82
83
null
B
592043
88
83
86
great final presentation +10
F
e9e16e
70
99
90
null
B
dea70a
86
88
90
great final presentation +10
A
7c89a5
84
81
88
null
B
8fa35a
94
88
79
great participation +10
A
edd586
72
81
80
null
C
436bd4
85
92
84
missed homework frequently -10
C
90681b
0
88
95
cheated on exam, gets 0pts
D
d52614
81
65
82
null
C
8a6228
90
81
79
null
D
0500f9
91
75
95
great participation +10
A
3e05b2
68
74
40
missed homework frequently -10
F
5b2c55
94
70
85
great participation +10
A
a23de6
82
69
75
great final presentation +10
B
c4e180
67
76
33
null
F
068e03
91
75
100
great participation +10
A
21baf3
68
73
81
missed class frequently -10
D
d30e8a
0
89
91
cheated on exam, gets 0pts
A
85f57e
61
78
64
null
D
9b7f42
63
93
94
null
B
679a97
64
85
97
missed class frequently -10
A
4a3f75
83
92
80
missed class frequently -10
C
af3867
88
67
92
null
D
38a6ec
88
67
74
null
A
745eca
95
85
98
null
A
cfdfba
71
94
89
null
B
014d82
73
96
92
null
B
a3b392
73
64
87
missed homework frequently -10
B
ba5948
97
98
80
great final presentation +10
A
2076d3
67
98
65
missed homework frequently -10
D
e86e4c
91
92
95
missed homework frequently -10
B
04babf
70
92
93
missed homework frequently -10
C
44c1e5
88
91
80
null
B
38d57f
83
99
80
null
B
aa4eaa
79
83
88
null
F
275403
60
37
62
null
F
7b4691
86
92
86
great participation +10
A
155b05
67
92
64
null
F
7e6566
78
76
72
null
C
dec99c
67
63
83
great participation +10
B
6bcef7
96
82
86
great participation +10
A
d030b5
91
0
94
cheated on exam, gets 0pts
D
a49ad1
93
0
60
cheated on exam, gets 0pts
F
b478d0
86
89
82
null
B
80cf8a
73
95
93
null
B
487e6d
85
100
78
null
B
60f3b4
85
72
70
null
C
6ec3d7
83
70
71
null
C
539378
62
92
95
null
B
cefe03
98
97
87
null
F
c771eb
90
95
68
null
B
6439dc
84
76
65
missed class frequently -10
D
d25806
82
80
98
great final presentation +10
A
ddd0ba
93
73
82
null
B
f288e4
53
72
46
missed class frequently -10
F
f8ca91
96
0
90
cheated on exam, gets 0pts
D
9d2936
58
92
93
null
D
080e8c
91
98
77
null
B
e2614a
85
62
75
null
F
8e6d24
90
95
75
great final presentation +10
A
213b34
89
74
85
missed class frequently -10
C
6a5846
95
90
69
null
B
303db0
86
80
89
null
B
afb6ce
73
80
95
null
B
a5992a
94
82
97
great final presentation +10
A
4591b4
66
72
83
missed homework frequently -10
B
00c486
70
84
76
null
C
1dc157
79
73
72
null
C
d0a4ce
72
90
93
null
B
528e8f
60
92
55
null
D
464aab
78
81
74
missed homework frequently -10
D
b20f6d
81
92
77
null
B
64c2f3
91
68
88
null
D
185495
93
96
90
null
A
01ed51
90
75
90
missed homework frequently -10
C
0c883c
84
93
62
missed class frequently -10
D
c19761
94
0
89
cheated on exam, gets 0pts
D
f2144b
74
94
84
great participation +10
A
bcdf72
78
0
86
cheated on exam, gets 0pts
F
6699cc
81
90
90
missed homework frequently -10
C
e64047
88
80
82
great participation +10
A
b3a1a5
0
96
90
cheated on exam, gets 0pts
B
94e777
99
86
54
null
C
bf4deb
69
95
62
great participation +10
B
bb243d
86
96
100
null
A
aad144
98
93
92
null
A
91044f
58
76
94
great participation +10
B
f4df5d
83
79
93
great participation +10
F
End of preview. Expand in Data Studio

Student Grades Dataset

Dataset Description

This dataset contains student grade data used in the cleanlab tutorial: Improving ML Performance via Data Curation with Train vs Test Splits.

The task is to predict each student's final letter grade (A, B, C, D, F) based on their exam scores and notes.

Dataset Summary

  • Total Examples: ~750 (train + test)
  • Task: Multi-class classification
  • Features:
    • exam_1: Score on first exam (0-100)
    • exam_2: Score on second exam (0-100)
    • exam_3: Score on third exam (0-100)
    • notes: Categorical notes about student (e.g., "great participation +10", "cheated on exam, gets 0pts")
    • stud_ID: Unique student identifier
  • Label: noisy_letter_grade - Letter grade (A, B, C, D, F)

Dataset Structure

from datasets import load_dataset

dataset = load_dataset("cleanlab/student-grades")

# Access splits
train_data = dataset["train"]
test_data = dataset["test"]

# Convert to pandas
import pandas as pd
df_train = train_data.to_pandas()
df_test = test_data.to_pandas()

Data Splits

Split Examples
train ~600
test ~130

Dataset Fields

  • stud_ID (string): Unique student identifier
  • exam_1 (float): First exam score (0-100)
  • exam_2 (float): Second exam score (0-100)
  • exam_3 (float): Third exam score (0-100)
  • notes (string): Categorical notes about the student
  • noisy_letter_grade (string): Final letter grade (A, B, C, D, F) - may contain label errors

Dataset Creation

This dataset was created for educational purposes to demonstrate data-centric AI techniques using cleanlab. The data intentionally contains:

  • Label noise: Some grades may be incorrectly labeled
  • Near duplicates: Some examples are very similar or exact duplicates
  • Outliers: Unusual data points that don't fit the distribution

These issues are introduced to help users learn how to detect and handle common data quality problems using cleanlab.

Uses

Primary Use Case

This dataset is designed for:

  1. Learning data-centric AI techniques
  2. Demonstrating cleanlab's capabilities for detecting label errors, outliers, and near duplicates
  3. Teaching proper train/test data curation workflows

Example Usage

from datasets import load_dataset
from cleanlab import Datalab

# Load dataset
dataset = load_dataset("cleanlab/student-grades")
df_train = dataset["train"].to_pandas()

# Use cleanlab to detect issues
lab = Datalab(data=df_train, label_name="noisy_letter_grade", task="classification")
lab.find_issues()
lab.report()

Tutorial

For a complete tutorial using this dataset, see: Improving ML Performance via Data Curation with Train vs Test Splits

Licensing Information

MIT License

Citation

If you use this dataset in your research, please cite the cleanlab library:

@software{cleanlab,
  author = {Northcutt, Curtis G. and Athalye, Anish and Mueller, Jonas},
  title = {cleanlab},
  year = {2021},
  url = {https://github.com/cleanlab/cleanlab},
}

Contact

Downloads last month
13