SentenceTransformer based on sentence-transformers/LaBSE
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/LaBSE
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/FaLaBSE-v5")
# Run inference
sentences = [
'آیا با دختری که باکره نیست ازدواج خواهید کرد؟',
'آیا با کسی که باکره نیست ازدواج می کنید؟',
'زنی با شلوار جین کنار اسبی با زین ایستاده است',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 149,098 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 5 tokens
- mean: 15.1 tokens
- max: 76 tokens
- min: 5 tokens
- mean: 14.54 tokens
- max: 57 tokens
- Samples:
anchor positive اگر هند تقسیم نشده بود ، هند امروز چگونه به نظر می رسد؟اگر پارتیشن اتفاق نیفتاد ، هند امروز چگونه خواهد بود؟چگونه می توانم وارد امنیت اینترنت شوم؟چگونه می توانم شروع به یادگیری امنیت اطلاعات کنم؟برخی از بهترین مؤسسات مربیگری GMAT در دهلی/NCR چیست؟بهترین مؤسسات مربیگری برای GMAT در NCR چیست؟ - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size: 32learning_rate: 2e-05weight_decay: 0.01batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss |
|---|---|---|
| 0.0429 | 100 | 0.0474 |
| 0.0858 | 200 | 0.0364 |
| 0.1288 | 300 | 0.0345 |
| 0.1717 | 400 | 0.0309 |
| 0.2146 | 500 | 0.0347 |
| 0.2575 | 600 | 0.0365 |
| 0.3004 | 700 | 0.0303 |
| 0.3433 | 800 | 0.0288 |
| 0.3863 | 900 | 0.029 |
| 0.4292 | 1000 | 0.0329 |
| 0.4721 | 1100 | 0.0351 |
| 0.5150 | 1200 | 0.0282 |
| 0.5579 | 1300 | 0.029 |
| 0.6009 | 1400 | 0.029 |
| 0.6438 | 1500 | 0.0278 |
| 0.6867 | 1600 | 0.028 |
| 0.7296 | 1700 | 0.0276 |
| 0.7725 | 1800 | 0.0306 |
| 0.8155 | 1900 | 0.0242 |
| 0.8584 | 2000 | 0.0254 |
| 0.9013 | 2100 | 0.0226 |
| 0.9442 | 2200 | 0.0261 |
| 0.9871 | 2300 | 0.0258 |
| 1.0300 | 2400 | 0.0245 |
| 1.0730 | 2500 | 0.0194 |
| 1.1159 | 2600 | 0.021 |
| 1.1588 | 2700 | 0.018 |
| 1.2017 | 2800 | 0.0201 |
| 1.2446 | 2900 | 0.0204 |
| 1.2876 | 3000 | 0.0178 |
| 1.3305 | 3100 | 0.0159 |
| 1.3734 | 3200 | 0.0184 |
| 1.4163 | 3300 | 0.0189 |
| 1.4592 | 3400 | 0.0194 |
| 1.5021 | 3500 | 0.0201 |
| 1.5451 | 3600 | 0.0164 |
| 1.5880 | 3700 | 0.0187 |
| 1.6309 | 3800 | 0.0181 |
| 1.6738 | 3900 | 0.0161 |
| 1.7167 | 4000 | 0.0195 |
| 1.7597 | 4100 | 0.0165 |
| 1.8026 | 4200 | 0.0175 |
| 1.8455 | 4300 | 0.016 |
| 1.8884 | 4400 | 0.0142 |
| 1.9313 | 4500 | 0.0187 |
| 1.9742 | 4600 | 0.0137 |
| 2.0172 | 4700 | 0.0173 |
| 2.0601 | 4800 | 0.015 |
| 2.1030 | 4900 | 0.0158 |
| 2.1459 | 5000 | 0.0135 |
| 2.1888 | 5100 | 0.0144 |
| 2.2318 | 5200 | 0.0135 |
| 2.2747 | 5300 | 0.0142 |
| 2.3176 | 5400 | 0.0129 |
| 2.3605 | 5500 | 0.0142 |
| 2.4034 | 5600 | 0.0141 |
| 2.4464 | 5700 | 0.0142 |
| 2.4893 | 5800 | 0.0141 |
| 2.5322 | 5900 | 0.0118 |
| 2.5751 | 6000 | 0.0142 |
| 2.6180 | 6100 | 0.0125 |
| 2.6609 | 6200 | 0.0107 |
| 2.7039 | 6300 | 0.0129 |
| 2.7468 | 6400 | 0.0114 |
| 2.7897 | 6500 | 0.0137 |
| 2.8326 | 6600 | 0.0108 |
| 2.8755 | 6700 | 0.0131 |
| 2.9185 | 6800 | 0.0114 |
| 2.9614 | 6900 | 0.0137 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Model tree for codersan/FaLaBSE-v5
Base model
sentence-transformers/LaBSE