Built with Axolotl

See axolotl config

axolotl version: 0.13.0.dev0

base_model: meta-llama/Llama-3.2-3B
tokenizer_type: AutoTokenizer
trust_remote_code: true
strict: false

is_llama_derived_model: true

chat_template: chatml

plugins:
  - axolotl.integrations.liger.LigerPlugin

special_tokens:
  pad_token: "<|eot_id|>"

datasets:
  - path: nvidia/Llama-Nemotron-Post-Training-Dataset
    name: SFT           
    split: chat         
    type: chat_template
    field_messages: input            
    message_property_mappings:
      role: role
      content: content
    field_output: output

train_on_inputs: false

sequence_len: 8192
eval_sequence_len: 8192
pad_to_sequence_len: true
sample_packing: true
sample_packing_group_size: 100000
sample_packing_bin_size: 200
group_by_length: true

flash_attn: true

micro_batch_size: 1               
gradient_accumulation_steps: 8    
num_epochs: 3

learning_rate: 2.0e-5
optimizer: adamw_torch_fused
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1.0e-8

lr_scheduler: cosine
warmup_steps: 100
weight_decay: 0.0   

bf16: true          
tf32: true
gradient_checkpointing: true
activation_offloading: false

val_set_size: 0.01          
eval_strategy: steps
eval_steps: 100

save_strategy: steps
save_steps: 100
save_total_limit: 3
save_only_model: false
save_safetensors: true
load_best_model_at_end: true
metric_for_best_model: eval_loss
greater_is_better: false

logging_steps: 10

output_dir: ./outputs/Llama-3.2-3B-base-nemotron-3epochs/
seed: 42

use_wandb: true
wandb_project: "llama31_base_nemotron"
wandb_name: "llama31-8b-base-nemotron"

outputs/Llama-3.2-3B-base-nemotron-3epochs/

This model is a fine-tuned version of meta-llama/Llama-3.2-3B on the nvidia/Llama-Nemotron-Post-Training-Dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1378
  • Memory/max Active (gib): 30.79
  • Memory/max Allocated (gib): 30.79
  • Memory/device Reserved (gib): 45.32

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 855

Training results

Training Loss Epoch Step Validation Loss Active (gib) Allocated (gib) Reserved (gib)
No log 0 0 3.5478 17.34 17.34 17.62
1.615 0.3498 100 1.5971 30.79 30.79 44.95
1.3711 0.6996 200 1.3929 30.79 30.79 45.32
1.1403 1.0490 300 1.3040 30.79 30.79 45.32
1.077 1.3988 400 1.2131 30.79 30.79 45.32
1.0224 1.7486 500 1.1687 30.79 30.79 45.32
0.9557 2.0979 600 1.1472 30.79 30.79 45.32
0.9446 2.4477 700 1.1403 30.79 30.79 45.32
0.9357 2.7976 800 1.1378 30.79 30.79 45.32

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.9.0+cu130
  • Datasets 4.3.0
  • Tokenizers 0.22.1
Downloads last month
8
Safetensors
Model size
3B params
Tensor type
F32
·
BF16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for cemig-temp/llama-3.2-3b-base-nemotron-3epochs

Finetuned
(367)
this model

Dataset used to train cemig-temp/llama-3.2-3b-base-nemotron-3epochs

Evaluation results