outputs_Feb_2026
This model is a fine-tuned version of facebook/dinov2-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0339
- Precision: 0.9831
- Recall: 0.9748
- F1: 0.9789
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 0.1
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
|---|---|---|---|---|---|---|
| 0.3687 | 1.0 | 145 | 0.0521 | 0.9621 | 0.9328 | 0.9472 |
| 0.0851 | 2.0 | 290 | 0.0300 | 0.9728 | 0.9769 | 0.9748 |
| 0.1077 | 3.0 | 435 | 0.0265 | 0.9758 | 0.9758 | 0.9758 |
| 0.0657 | 4.0 | 580 | 0.0329 | 0.9747 | 0.9695 | 0.9721 |
| 0.0223 | 5.0 | 725 | 0.0382 | 0.9728 | 0.9769 | 0.9748 |
| 0.0415 | 6.0 | 870 | 0.0365 | 0.9840 | 0.9716 | 0.9778 |
| 0.0341 | 7.0 | 1015 | 0.0428 | 0.9840 | 0.9674 | 0.9756 |
| 0.0518 | 8.0 | 1160 | 0.0337 | 0.9779 | 0.9758 | 0.9769 |
| 0.0181 | 9.0 | 1305 | 0.0352 | 0.9820 | 0.9737 | 0.9778 |
| 0.0003 | 10.0 | 1450 | 0.0339 | 0.9831 | 0.9748 | 0.9789 |
Framework versions
- Transformers 5.0.0
- Pytorch 2.10.0+cu128
- Datasets 4.5.0
- Tokenizers 0.22.2
- Downloads last month
- 11
Model tree for buddhadeb33/outputs_Feb_2026
Base model
facebook/dinov2-base