ONNX Export: broadfield-dev/bert-mini-ner-pii-mobile
This is a version of broadfield-dev/bert-mini-ner-pii-training-tuned-12270113 that has been converted to ONNX and optimized.
Model Details
- Base Model:
broadfield-dev/bert-mini-ner-pii-training-tuned-12270113
- Task:
token-classification
- Opset Version:
17
- Optimization:
FP32 (No Quantization)
Usage
Installation
For a lightweight mobile/serverless setup, you only need onnxruntime and tokenizers.
pip install onnxruntime tokenizers
Python Example
from tokenizers import Tokenizer
import onnxruntime as ort
import numpy as np
tokenizer = Tokenizer.from_pretrained("broadfield-dev/bert-mini-ner-pii-mobile")
session = ort.InferenceSession("model.onnx")
text = "Run inference on mobile!"
encoding = tokenizer.encode(text)
inputs = {
"input_ids": np.array([encoding.ids], dtype=np.int64),
"attention_mask": np.array([encoding.attention_mask], dtype=np.int64)
}
outputs = session.run(None, inputs)
print("Output logits shape:", outputs[0].shape)
About this Export
This model was exported using Optimum.
It includes the FP32 (No Quantization) quantization settings and a pre-compiled tokenizer.json for fast loading.